References
- Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
- Hagood, N.W. and McFarland, A.J. (1995), "Modeling of a piezoelectric rotary ultrasonic motor", IEEE T. Ultrason. Ferr., 42(2), 210-224. https://doi.org/10.1109/58.365235.
- Hojjat, Y. and Karafi, M.R. (2010), "Introduction of roller interface ultrasonic motor (RIUSM)", Sensor Actuat. A: Phys., 163(1), 304-310. https://doi.org/10.1016/j.sna.2010.07.002
- Iino, A., Suzuki, K., Kasuga, M., Suzuki, M. and Yamanaka, T. (2000), "Development of a self-oscillating ultrasonic micromotor and its application to a watch", Ultrasonics, 38(1-8), 54-59. https://doi.org/10.1016/S0041-624X(99)00192-4.
- Li, C. (2001), "Small-sized bionic ultrasonic linear motor", Small Spec. Machines, 11(6), 10-11.
- Lin, S. and Xu, J. (2018), "Analysis on the cascade high power piezoelectric ultrasonic transducers", Smart Struct. Syst., 21(2), 151-161. https://doi.org/10.12989/sss.2018.21.2.151
- Maeno, T., Tsukimoto, T. and Miyake, A. (1990), "The contact mechanism of an ultrasonic motor", Proceedings of the IEEE 7th International Symposium on Applications of Ferroelectrics, Champaign, Illinois, United States, June. https://doi.org/10.1109/ISAF.1990.200308
- Marinkovic, D. and Marinkovic, Z. (2012), "On FEM modeling of piezoelectric actuators and sensors for thin-walled structures", Smart Struct. Syst., 9(5), 411-426. https://doi.org/10.12989/sss.2012.9.5.411
- Marinkovic, D. and Rama, G. (2017), "Co-rotational shell element for numerical analysis of laminated piezoelectric composite structures", Compos. Part B: Eng., 125, 144-156. https://doi.org/10.1016/j.compositesb.2017.05.061
- Paik, D.S., Yoo, K.H., Kang, C.Y., Cho, B.H., Nam, S. and Yoon, S.J. (2009), "Multilayer piezoelectric linear ultrasonic motor for camera module", J Electroceram, 22(1-3), 346-351. https://doi.org/10.1007/s10832-008-9513-3
- Pan, Q., Huang, F., Chen, J., He, L.G., Li, W. and Feng, Z. (2016), "High-speed low- friction piezoelectric motors based on centrifugal force", IEEE T. Ind. Electron., 64(3), 2158-2167. https://doi.org/10.1109/TIE.2016.2623578.
- Rama, G. (2017), "A 3-node piezoelectric shell element for linear and geometrically nonlinear dynamic analysis of smart structures", Facta Universitatis-Series Mechanical Engineering, 15(1), 31-44. https://doi.org/10.22190/FUME170225002R
- Rama, G., Marinkovic, D. and Zehn, M. (2017), "Efficient threenode finite shell element for linear and geometrically nonlinear analyses of piezoelectric laminated structures", J. Intel. Mat. Syst. Str., 29(3), 345-357. https://doi.org/10.1177%2F1045389X17705538 https://doi.org/10.1177/1045389X17705538
- Sadeghbeigi Olyaie, M. and Razfar, M.R. (2013), "Numerical characterizations of a piezoelectric micromotor using topology optimization design", Smart Struct. Syst., 11(3), 241-259. https://doi.org/10.12989/sss.2013.11.3.241.
- Sashida, T. (1998), An Introduction to Ultrasonic Motors, Oxford university press, Oxford, United Kingdom.
- Sharma, S., Vig, R. and Kumar, N. (2015), "Active vibration control: considering effect of electric field on coefficients of PZT patches", Smart Struct. Syst., 16(6), 1091-1105. https://doi.org/10.12989/sss.2015.16.6.1091
- Sung, C. and Tien, S. (2015), "The study on piezoelectric transducers: theoretical analysis and experimental verification", Smart Struct. Syst., 15(4), 1063-1083. https://doi.org/10.12989/sss.2015.15.4.1063
- Tavallaei, M.A., Atashzar, S.F. and Drangova, M. (2016), "Robust motion control of ultrasonic motors under temperature disturbance", IEEE T. Ind. Electron. 63(4), 2360-2368. https://doi.org/10.1109/TIE.2015.2499723.
- Venkata Rao, K., Raja, S. and Munikenche, T. (2014), "Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators", Smart Struct. Syst., 13(1), 55-80. http://dx.doi.org/10.12989/sss.2014.13.1.055
- Wallaschek, J. (1998), "Contact mechanics of piezoelectric ultrasonic motors", Smart Mater. Struct., 7(3), 369-381. https://doi.org/10.1088/0964-1726/7/3/011
- Yoshita, R. and Okamoto, Y. (2002), "Micro piezoelectric actuator'', J. Japan society for precision Eng., 68(5), 645-648. https://doi.org/10.2493/jjspe.68.645
- Zeng, X., Yue, Z., Zhao, B. and Wen, S.F. (2014), "Analysis of a three-dimensional FEM model of a thin piezoelectric actuator embedded in an infinite host structure", Adv. Mater. Res., 3(1), 237-257. https://doi.org/10.12989/amr.2014.3.1.237
- Zenz, G., Berger, W., Gerstmayr, J., Nader M. and Krommer M. (2013) "Design of piezoelectric transducer arrays for passive and active modal control of thin plates", Smart Struct. Syst., 12(5), 547-577. https://doi.org/10.12989/sss.2013.12.5.547.
- Zhai, B., Lim, S.P., Lee, K.H., Dong, S. and Lu, P. (2000), "A modified ultrasonic linear motor", Sensor Actuat. A: Phys., 86(3), 154-158. https://doi.org/10.1016/S0924-4247(00)00439-8
- Zhang, Q., Chen, W., Liu, Y., Liu, J. and Jiang, Q. (2017), "A frog shaped linear piezoelectric actuator using first order longitudinal vibration mode", IEEE T. Ind. Electron., 64(3), 2188-2195. https://doi.org/10.1109/TIE.2016.2626242.
- Zhao, C. (2011), Ultrasonic Motors Technologies and Applications, (2nd Ed.), Science press Beijing, Nanjing, Jiangsu, China.
- Zhou, W., Li, H. and Yuan, F.G. (2016), "An anisotropic ultrasonic transducer for Lamb wave applications", Smart Struct. Syst., 17(6), 1055-1065. https://doi.org/10.12989/sss.2016.17.6.1055.