DOI QR코드

DOI QR Code

Design and fabrication of a new piezoelectric paper feeder actuator without mechanical parts

  • Ghorbanirezaei, Shahryar (Department of Mechanical Engineering, Tarbiat Modares University) ;
  • Hojjat, Yousef (Department of Mechanical Engineering, Tarbiat Modares University) ;
  • Ghodsi, Mojtaba (Department of Mechanical and Industrial Engineering, Sultan Qaboos University)
  • Received : 2018.06.19
  • Accepted : 2019.04.21
  • Published : 2019.08.25

Abstract

A piezoelectric paper feeder actuator using Micro Virtual Roller (MVR) is proposed, designed, fabricated and tested. This actuator can drive a sheet of paper forward or backward without any mechanical parts, such as the costly and heavy rollers used in traditional paper feeders. In this paper feeder actuator, two vibrating stators which produce traveling waves are used to drive the paper. The vibrations of the stators are similar to those of piezoelectric motors and follow a similar procedure to move the paper. A feasibility study simulated the actuator in COMSOL Multiphysics Software. Traveling wave and elliptical trajectories were obtained and the dimensions of the stator were optimized using FEM so that the paper could move at top speed. Next, the eigenfrequencies of the actuator was determined. Experimental testing was done in order to validate the FEM results that revealed the relationships between speed and parameters such as frequency and voltage. Advantages of this new mechanism are the sharp decrease in power consumption and low maintenance.

Keywords

References

  1. Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  2. Hagood, N.W. and McFarland, A.J. (1995), "Modeling of a piezoelectric rotary ultrasonic motor", IEEE T. Ultrason. Ferr., 42(2), 210-224. https://doi.org/10.1109/58.365235.
  3. Hojjat, Y. and Karafi, M.R. (2010), "Introduction of roller interface ultrasonic motor (RIUSM)", Sensor Actuat. A: Phys., 163(1), 304-310. https://doi.org/10.1016/j.sna.2010.07.002
  4. Iino, A., Suzuki, K., Kasuga, M., Suzuki, M. and Yamanaka, T. (2000), "Development of a self-oscillating ultrasonic micromotor and its application to a watch", Ultrasonics, 38(1-8), 54-59. https://doi.org/10.1016/S0041-624X(99)00192-4.
  5. Li, C. (2001), "Small-sized bionic ultrasonic linear motor", Small Spec. Machines, 11(6), 10-11.
  6. Lin, S. and Xu, J. (2018), "Analysis on the cascade high power piezoelectric ultrasonic transducers", Smart Struct. Syst., 21(2), 151-161. https://doi.org/10.12989/sss.2018.21.2.151
  7. Maeno, T., Tsukimoto, T. and Miyake, A. (1990), "The contact mechanism of an ultrasonic motor", Proceedings of the IEEE 7th International Symposium on Applications of Ferroelectrics, Champaign, Illinois, United States, June. https://doi.org/10.1109/ISAF.1990.200308
  8. Marinkovic, D. and Marinkovic, Z. (2012), "On FEM modeling of piezoelectric actuators and sensors for thin-walled structures", Smart Struct. Syst., 9(5), 411-426. https://doi.org/10.12989/sss.2012.9.5.411
  9. Marinkovic, D. and Rama, G. (2017), "Co-rotational shell element for numerical analysis of laminated piezoelectric composite structures", Compos. Part B: Eng., 125, 144-156. https://doi.org/10.1016/j.compositesb.2017.05.061
  10. Paik, D.S., Yoo, K.H., Kang, C.Y., Cho, B.H., Nam, S. and Yoon, S.J. (2009), "Multilayer piezoelectric linear ultrasonic motor for camera module", J Electroceram, 22(1-3), 346-351. https://doi.org/10.1007/s10832-008-9513-3
  11. Pan, Q., Huang, F., Chen, J., He, L.G., Li, W. and Feng, Z. (2016), "High-speed low- friction piezoelectric motors based on centrifugal force", IEEE T. Ind. Electron., 64(3), 2158-2167. https://doi.org/10.1109/TIE.2016.2623578.
  12. Rama, G. (2017), "A 3-node piezoelectric shell element for linear and geometrically nonlinear dynamic analysis of smart structures", Facta Universitatis-Series Mechanical Engineering, 15(1), 31-44. https://doi.org/10.22190/FUME170225002R
  13. Rama, G., Marinkovic, D. and Zehn, M. (2017), "Efficient threenode finite shell element for linear and geometrically nonlinear analyses of piezoelectric laminated structures", J. Intel. Mat. Syst. Str., 29(3), 345-357. https://doi.org/10.1177%2F1045389X17705538 https://doi.org/10.1177/1045389X17705538
  14. Sadeghbeigi Olyaie, M. and Razfar, M.R. (2013), "Numerical characterizations of a piezoelectric micromotor using topology optimization design", Smart Struct. Syst., 11(3), 241-259. https://doi.org/10.12989/sss.2013.11.3.241.
  15. Sashida, T. (1998), An Introduction to Ultrasonic Motors, Oxford university press, Oxford, United Kingdom.
  16. Sharma, S., Vig, R. and Kumar, N. (2015), "Active vibration control: considering effect of electric field on coefficients of PZT patches", Smart Struct. Syst., 16(6), 1091-1105. https://doi.org/10.12989/sss.2015.16.6.1091
  17. Sung, C. and Tien, S. (2015), "The study on piezoelectric transducers: theoretical analysis and experimental verification", Smart Struct. Syst., 15(4), 1063-1083. https://doi.org/10.12989/sss.2015.15.4.1063
  18. Tavallaei, M.A., Atashzar, S.F. and Drangova, M. (2016), "Robust motion control of ultrasonic motors under temperature disturbance", IEEE T. Ind. Electron. 63(4), 2360-2368. https://doi.org/10.1109/TIE.2015.2499723.
  19. Venkata Rao, K., Raja, S. and Munikenche, T. (2014), "Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators", Smart Struct. Syst., 13(1), 55-80. http://dx.doi.org/10.12989/sss.2014.13.1.055
  20. Wallaschek, J. (1998), "Contact mechanics of piezoelectric ultrasonic motors", Smart Mater. Struct., 7(3), 369-381. https://doi.org/10.1088/0964-1726/7/3/011
  21. Yoshita, R. and Okamoto, Y. (2002), "Micro piezoelectric actuator'', J. Japan society for precision Eng., 68(5), 645-648. https://doi.org/10.2493/jjspe.68.645
  22. Zeng, X., Yue, Z., Zhao, B. and Wen, S.F. (2014), "Analysis of a three-dimensional FEM model of a thin piezoelectric actuator embedded in an infinite host structure", Adv. Mater. Res., 3(1), 237-257. https://doi.org/10.12989/amr.2014.3.1.237
  23. Zenz, G., Berger, W., Gerstmayr, J., Nader M. and Krommer M. (2013) "Design of piezoelectric transducer arrays for passive and active modal control of thin plates", Smart Struct. Syst., 12(5), 547-577. https://doi.org/10.12989/sss.2013.12.5.547.
  24. Zhai, B., Lim, S.P., Lee, K.H., Dong, S. and Lu, P. (2000), "A modified ultrasonic linear motor", Sensor Actuat. A: Phys., 86(3), 154-158. https://doi.org/10.1016/S0924-4247(00)00439-8
  25. Zhang, Q., Chen, W., Liu, Y., Liu, J. and Jiang, Q. (2017), "A frog shaped linear piezoelectric actuator using first order longitudinal vibration mode", IEEE T. Ind. Electron., 64(3), 2188-2195. https://doi.org/10.1109/TIE.2016.2626242.
  26. Zhao, C. (2011), Ultrasonic Motors Technologies and Applications, (2nd Ed.), Science press Beijing, Nanjing, Jiangsu, China.
  27. Zhou, W., Li, H. and Yuan, F.G. (2016), "An anisotropic ultrasonic transducer for Lamb wave applications", Smart Struct. Syst., 17(6), 1055-1065. https://doi.org/10.12989/sss.2016.17.6.1055.