DOI QR코드

DOI QR Code

Physical Characteristics of Concrete Using High-Fineness Cement and Fly Ash

고분말도 시멘트와 플라이애시를 사용한 콘크리트의 물리적 특성

  • Received : 2019.05.27
  • Accepted : 2019.07.15
  • Published : 2019.08.20

Abstract

The cement industry is considered a major industry for reducing greenhouse gases, increasing the amount of binding materials that can replace cement in concrete is known as the most effective method for reducing carbon dioxide. Therefore, research is being carried out to utilize large quantities of by-products that can be used as alternatives to cement. However, there are problems with reduced strength at early age and retarded setting for major reasons that do not increase the amount of mixture of binders used to replace cement. Thus, in this study, normal cement and high-fineness cement were used and physical properties were reviewed by placing differences in fly ash usage depending on the type of cement. As a result, the characteristics of strength were similar, and the hydration temperature was the same level. Also, the durability test showed that the length change, carbonation resistance were better than those of normal cement. Therefore, it is confirmed that the use of high-fineness cement is effective to reduce the amount of cement used and using more by-products.

시멘트 산업은 온실가스 감축을 위한 주요 산업분야로 고려되고 있으며, 콘크리트에 시멘트를 대체할 수 있는 재료의 사용량을 증가시키는 것은 이산화탄소 감축을 위해 효과적인 방법으로 알려져 있다. 따라서 시멘트의 일부를 대체하여 사용할 수 있는 산업부산물을 다량으로 활용하기 위한 연구가 진행되고 있다. 그러나 산업부산물의 혼합량을 증가시키지 못하는 큰 이유로 초기강도 저하와 응결지연에 대한 문제점이 있다. 따라서 이 연구에서는 보통 시멘트를 사용한 경우와 고분말도 시멘트를 사용한 경우에 대해 플라이애시의 사용량에 차이를 두고 물리적 특성을 검토하여, 시멘트의 사용량을 줄이고 산업부산물을 다량으로 사용하기 위한 방안으로서, 고분말도 시멘트를 활용한 결과에 대한 기초 자료를 제시하였다.

Keywords

GCSGBX_2019_v19n4_323_f0001.png 이미지

Figure 1. Hydration heat measurement

GCSGBX_2019_v19n4_323_f0002.png 이미지

Figure 2. Temperature of concrete

GCSGBX_2019_v19n4_323_f0003.png 이미지

Figure 3. Compressive strength of concrete

GCSGBX_2019_v19n4_323_f0004.png 이미지

Figure 4. Length change of concrete

GCSGBX_2019_v19n4_323_f0005.png 이미지

Figure 5. Carbonation depth of concrete

Table 2. Mix proportion of concrete

GCSGBX_2019_v19n4_323_t0001.png 이미지

Table 1. Design of experiment

GCSGBX_2019_v19n4_323_t0002.png 이미지

Table 3. Test methods and standards of test items

GCSGBX_2019_v19n4_323_t0003.png 이미지

Table 4. Result of slump and air content

GCSGBX_2019_v19n4_323_t0004.png 이미지

Table 5. Result of compressive strength

GCSGBX_2019_v19n4_323_t0005.png 이미지

Table 6. Demolition time of form

GCSGBX_2019_v19n4_323_t0006.png 이미지

Table 7. Result of carbonation depth

GCSGBX_2019_v19n4_323_t0007.png 이미지

References

  1. Online Archive of Statement emission statistics in Korea. Seoul: Greenhouse Gas Inventory & Research Center of Korea. 2011- [cited 2019 Aug 7]. Available from: http://www.gir.go.kr/home/index.do?menuId=37/.
  2. Korea Concrete Institute. Concrete and environment. Seoul(Korea): Kimoondang; 2016. p. 45-60.
  3. Lee SH. Consideration of the significance of admixture and binder in cement and concrete. 38th Cement Symposium; 2011 Jul. 7-8; Chung-Ju, Korea. Seoul (Korea): Korea Cement Association; 2011. p. 38-46.
  4. Berry EE, Hemmings RT, Zhang MH, Cornelius BJ, Golden DM. Hydration in high-volume fly ash concrete binders. American Concrete Institute Materials Journal. 1994 Jul;91(4):382-9.
  5. Chen W, Brouwers HJH. The hydration of slag, part 1: reaction models for alkali-activated slag. Journal of Materials Science. 2007 Jan;42(2):428-43. https://doi.org/10.1007/s10853-006-0873-2
  6. Bentz DP, Peltz MA, Durán-Herrera A, Valdez P, Juárez CA. Thermal properties of high-volume fly ash mortars and concrete. Journal of building Physics. 2010 Jul;34(3):263-75. https://doi.org/10.1177/1744259110376613
  7. Noriko F. The asia-pacific partnership on clean development and climate: what is is and what it is not. Brussels (BE): Centre for European Policy Studies (BE); 2007 Nov. 12 p. Report No.:144.
  8. Han CG, Park SG. Eco-friendly ready miaxed concrete using waste materials and by-products. Magazine of the Korea Concrete Institute. 2016 Jul;28(4):20-5.
  9. Kim JS, Jung SH. Specification and certification of eco-friendly concrete. Spring Conference of Korea Institute for Structural Maintenance and Inspection; 2016 Apr. 12-14; Seogwipo, Korea. Seoul (Korea): Korea Institute for Structural Maintenance and Inspection, 2016. p. 649-50.
  10. Ha JS, Kim HS, Lee YD. Properties of strength development of concrete at early age using high fineness cement and fly ash. Journal of the Korea Institute for Structural Maintenance and Inspection. 2018 Mar;22(2):154-60. https://doi.org/10.11112/jksmi.2018.22.2.154
  11. Kim HS, Ha JS, Lee YD. Properties of strength development of concrete using high fineness cement and blast furnace slag. Spring Conference of Korea Institute of Building Construction; 2018 May 16-18; Seogwipo, Korea. Seoul (Korea): Korea Institute of Building Construction, 2018. p. 197-8.
  12. Lee YD, Lee DH. Properties of strength development concrete using high fineness cement and fly ash. Fall Conference of Architectural Institute of Korea; 2018 Oct. 26-27; Pyeongchang, Korea. Seoul (Korea): Architectural Institute of Korea, 2018. p. 508-8.
  13. Korea Concrete Institute. Engineering of concrete. Seoul(Korea): Kimoondang; 2011. p. 108-10.
  14. Korea Concrete Institute. Engineering of concrete. Seoul(Korea): Kimoondang; 2011. p. 112-7.
  15. Korea Concrete Institute. Engineering of concrete. Seoul(Korea): Kimoondang; 2011. p. 144-7.
  16. Korea Concrete Institute. Engineering of concrete. Seoul(Korea): Kimoondang; 2011. p. 40-5.
  17. Kumar Mehta P, Monteiro PJM. Concrete; Microstructure, Properties, and Materials. New York (NY); McGraw-Hill; 2005. p. 213.
  18. Ministry of Land, Infrastructure and Transport. Standard specification of concrete. Sejong(Korea): Ministry of Land, Infrastructure and Transport; 2016. p. 93-5.
  19. Korea Concrete Institute. Engineering of concrete. Seoul(Korea): Kimoondang; 2011. p. 556-64.
  20. Kim JH, Park BS, Jung SH, Choi YC. Effect of properties of fly-ashes on the characteristics of fly-ash mortars. Journal of the Korean Recycled Construction Resources Institute. 2016 Dec;4(4):439-45. https://doi.org/10.14190/JRCR.2016.4.4.439
  21. Korea Concrete Institute. Engineering of concrete. Seoul(Korea): Kimoondang; 2011. p. 420-56.
  22. Choi WC. Concrete : crack, deterioration and measures. Paju(Korea): Donghwa Technology Publishing Co., Ltd; 2010. p. 114-8.