Fig. 1. Absorption coefficient graph according to wavelength and exposure.
Fig. 2. Schematic of laser interference lithography system.
Fig. 3. Schematic of double exposure with sample rotation.
Fig. 4. SEM micrographs of the double exposure pattern: at a rotation angle of 90° (×10,000 magnification).
Fig. 6. Simulation of double exposures at sample rotation angle of 24° (Ratio of the first exposure intensity to the second exposure intensity) (a) 1:1, (b) 1:0.8, (c) 1:0.6, (d) 1:0.4, and (e) 1:0.2.
Fig. 7. SEM image of double exposure: at rotation angle of 24°.
Fig. 8. SEM image of double exposure according to intensity distribution: rotation angle 24°.
Fig. 5. (a) Simulation of double exposure at a rotation angle of 12°; (b) Case 1: SEM image of double exposure; (c) a magnified SEM image of Fig. 3(b); (d) Case 2: SEM image of double exposure and; (e) magnification of the SEM image in Fig. 3(d).
References
- L. Wang, Z.-H. Lu, X.-F. Lin, Q.-D. Chen, B.-B. Xu, and H.-B. Sun, "Rapid Fabrication of Large-Area Periodic Structures by Multiple Exposure of Two-Beam Interference", J. Lightwave Technol., 31(2), 276 (2013). https://doi.org/10.1109/JLT.2012.2228632
- J. H. Park, D. H. Yun, Y. W. Ma, C. Y. Gwak, G. Je, and B. S. Shin, "Laser interference lithography on non-planar surface for roll-to-roll process", Proc. SPIE 10520, Laser-based Micro- and Nanoprocessing XII, San Francisco, 105201D (2018).
- A. F. Lasagni, "Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns", Adv. Opt. Techn., 6(3-4), 265 (2017). https://doi.org/10.1515/aot-2017-0016
- G. M. Burrow, and T. K. Gaylord, "Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures", Micromachines, 2(2), 221 (2011). https://doi.org/10.3390/mi2020221
- M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography", Nature, 404, 53 (2000). https://doi.org/10.1038/35003523
- E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Langbein, and S. Mittler, "Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies", J. Biomed. Opt., 18(3), 035002 (2013). https://doi.org/10.1117/1.JBO.18.3.035002
- ma-P 1200 - Positive Tone Photoresist Series Datasheet, Micro Resist Technology GmbH, (June, 2019) from https://www.microresist.de
- S. H. Zaidi, and S. R. J. Brueck, "Multipleexposure interferometric lithography", J. Vac. Sci. Technol. B., 11(3), 658 (1993). https://doi.org/10.1116/1.586816
- A. Rodriguez, S. M. Olaizola, and I. Ayerdi, "Laser Interference Lithography for Micro-and Nano-fabrication: Design and Development of a Prototype for Industrial End-users", 1st Ed., pp.28 VDM verlag, San Bernardino (2011).
- R. Sidharthan, and V. M. Murukeshan, "Pattern definition employing prism-based deep ultraviolet lithography", Micro & Nano Lett., 6(3), 109 (2011). https://doi.org/10.1049/mnl.2010.0196