References
- Afacan, K.B, Brandenberg, S.J. and Stewart, J.P. (2014), "Centrifuge modeling studies of site response in soft clay over wide strain range", J. Geotech. Geoenviron. Eng., 140(2), 04013003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001014.
- Akoto, B.K.A. and Singh, G. (1986), "Behavior of lime-stabilized laterite under repeated loading", Australian Road Res., 16(4), 259-267.
- Ali, H. and Mohamed, M. (2017), "The effects of compaction delay and environmental temperature on the mechanical and hydraulic properties of lime-stabilized extremely high plastic clays", Appl. Clay Sci., 150, 333-341. https://doi.org/10.1016/j.clay.2017.09.019.
- Al-Mukhtar, M., Khattab, S. and Alcover, J.F. (2012). "Microstructure and geotechnical properties of lime-treated expansive clayey soil", Eng. Geol., 139-140, 17-27. https://doi.org/10.1016/j.enggeo.2012.04.004.
- Al-Mukhtar, M., Lasledj, A. and Alcover, J.F. (2014), "Lime consumption of different clayey soils", Appl. Clay Sci., 95, 133-145. https://doi.org/10.1016/j.clay.2014.03.024.
- Al-Rawas, A.A., Hago, A. and Al-Sarmi, H. (2005), "Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman", Build. Environ., 40(5), 681-687. https://doi.org/10.1016/j.buildenv.2004.08.028.
- Angin, Z. and Ikizler, S.B. (2018), "Assessment of swelling pressure of stabilized Bentonite", Geomech. Eng., 15(6), 1219-1225. https://doi.org/10.12989/gae.2018.15.6.1219.
- Anon. (1985), Lime Stabilization Construction Manual, National Lime Association, Arlington, Virginia, U.S.A.
- Anon. (1990), Lime Stabilization Manual, British Aggregate Construction Materials Industry, London, U.K.
- Asgari, M.R., Baghebanzadeh Dezfuli, A. and Bayat, M. (2015), "Experimental study on stabilization of a low plasticity clayey soil with cement/lime", Arab. J. Geosci., 8(3), 1439-1452. https://doi.org/10.1007/s12517-013-1173-1.
- ASTM (1994), Annual Book of ASTM Standards: Soil and Rock, American Society for Testing and Materials, Philadelphia, U.S.A.
- Basma, A.A. and Tuncer, E.R. (1991), "Effect of lime on volume change and compressibility of expansive clays", Transport. Res. Rec., 1296, 54-61.
- Bell, F.G. (1996), "Lime stabilization of clay minerals and soils", Eng. Geol., 42(4), 223-237. https://doi.org/10.1016/0013-7952(96)00028-2.
- Bozbey, I. and Garaisayev, S. (2010), "Effects of soil pulverization quality on lime stabilization of an expansive clay", Environ. Earth Sci., 60(6), 1137-1151. https://doi.org/10.1007/s12665-009-0256-5.
- Calik, U. and Sadoglu, E. (2014), "Engineering properties of expansive clayey soil stabilized with lime and perlite", Geomech. Eng., 6(4), 403-418. http://dx.doi.org/10.12989/gae.2014.6.4.403.
- Canakci, H., Aziz, A. and Celik, F. (2015), "Soil stabilization of clay with lignin, rice husk powder and ash", Geomech. Eng., 8(1), 67-79. http://dx.doi.org/10.12989/gae.2015.8.1.067.
- Chavali, R.V.P. and Reddy, P.H.P. (2018), "Control of phosphoric acid induced volume change in clays using fly ash", Geomech. Eng., 15(6), 1135-1141. https://doi.org/10.12989/gae.2018.15.6.1135.
- Cheng, Y. and Huang, X. (2019), "Effect of mineral additives on the behavior of an expansive soil for use in highway subgrade soils", Appl. Sci., 9(1), 30. https://doi.org/10.3390/app9010030.
- Di Sante, M., Fratalocchi, E., Mazzieri, F. and Brianzoni, V. (2015), "Influence of delayed compaction on the compressibility and hydraulic conductivity of soil-lime mixtures", Eng. Geol., 185, 131-138. https://doi.org/10.1016/j.enggeo.2014.12.005.
- Escolano, F., Sanchez, J.R., Pacheco-Torres, R. and Cerro-Prada, E. (2018), "Strategies on reuse of clayey expansive soils as embankment material in urban development areas: A case study in new urbanized zones", Appl. Sci., 8(5), 764. https://doi.org/10.3390/app8050764.
- Fahoum, K., Aggour, M.S. and Amini, F. (1996), "Dynamic properties of cohesive soils treated with lime", J. Geotech. Eng., 122(5), 382-389. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(382).
- Gallage, C., Cochrane, M. and Ramanujam, J. (2012), "Effects of lime content and amelioration period in double lime application on the strength of lime treated expansive sub-grade soils", Proceedings of the 2nd International Conference on Transportation Geotechniques, Hokkaido, Japan, September.
- Garzon, E., Cano, M., O'Kelly, B.C. and Sanchez-Soto, P.J. (2016), "Effect of lime on stabilization of phyllite clays", Appl. Clay Sci., 123, 329-334. https://doi.org/10.1016/j.clay.2016.01.042.
- Ghobadi, M.H., Abdilor, Y. and Babazadeh, R. (2014), "Stabilization of clay soils using lime and effect of pH variations on shear strength parameters", Bull. Eng. Geol. Environ., 73(2), 611-619. https://doi.org/10.1007/s10064-013-0563-7.
- Hoyos, L.R., Puppala, A.J. and Chainuwat, P. (2004), "Dynamic properties of chemically stabilized sulfate rich clay", J. Geotech. Geoenviron. Eng., 130(2), 153-162. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(153).
- Jahandari, S., Saberian, M., Zivari, F., Li, J., Ghasemi, M. and Vali, R. (2019), "Experimental study of the effects of curing time on geotechnical properties of stabilized clay with lime and geogrid", Int. J. Geotech. Eng., 13(2), 172-183. https://doi.org/10.1080/19386362.2017.1329259.
- Kavak, A. and Akyarli, A. (2007), "A field application for lime stabilization", Environ. Geol., 51(6), 987-997. https://doi.org/10.1007/s00254-006-0368-0.
- Kim, Y., Dang, M.Q. and Lee, J.K. (2018), "Soil stabilization by ground bottom ash and red mud", Geomech. Eng., 16(1), 105-112. https://doi.org/10.12989/gae.2018.16.1.105.
- Lu, W., Miao, L., Zhang, J., Zhang, Y. and Li, J. (2019), "Characteristics of deformation and damping of cement treated and expanded polystyrene mixed lightweight subgrade fill under cyclic load", Appl. Sci., 9(1), 167. https://doi.org/10.3390/app9010167.
- Mallela, J., Harold Von Quintus, P., Smith, K.L. and Consultants, E. (2004), Consideration of Lime Stabilized Layers in Mechanistic-Empirical Pavement Design, The National Lime Association, Arlington, Virginia, U.S.A.
- Mebarki, M., Kareche, T., Derfouf, F.E.M., Taibi, S. and Aboubekr, N. (2019), "Hydromechanical behavior of a natural swelling soil of Boumagueur region (east of Algeria)", Geomech. Eng., 17(1), 69-79. https://doi.org/10.12989/gae.2019.17.1.069.
- Millogo, Y., Morel, J.C., Traore, K. and Ouedraogo, R. (2012), "Microstructure, geotechnical and mechanical characteristics of quicklime-lateritic gravels mixtures used in road construction", Constr. Build. Mater., 26(1), 663-669. https://doi.org/10.1016/j.conbuildmat.2011.06.069.
- Mitchell, J.K. and Hooper, D.R. (1961), "Influence of time between mixing and compaction on properties of a lime-stabilized expansive clay", Highway Res. Board Bull., 304, 14-31.
- Moayyeri, N., Oulapour, M. and Haghighi, A. (2019), "Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume", Geomech. Eng., 17(2), 195-206. https://doi.org/10.12989/gae.2019.17.2.195.
- Osinubi, K.J. (1998), "Influence of compactive efforts and compaction delays on lime-treated soil", J. Transport. Eng., 124(2), 149-155. https://doi.org/10.1061/(ASCE)0733-947X(1998)124:2(149).
- Parsons, R.L., Johnson, C.P. and Cross, S.A. (2001), "Evaluation of soil modification mixing procedures", Proceedings of the 80th Annual Meeting, Transportation Research Board, National Research Council, Washington, D.C., U.S.A.
- Rao, S.M., Shivananda, P. (2005), "Compressibility behavior of lime-stabilized clay", Geotech. Geol. Eng., 23, 309-319. https://doi.org/10.1007/s10706-004-1608-2.
- Sahoo, S.P., Singh, S.P. and Das, R. (2017), "Effects of delay time on plasticity and compaction characteristics of lime modified expansive soil", Proceedings of the Indian Geotechnical Conference GeoNEst, Guwahati, India, December.
- Sakr, M.A., Shahin, M.A. and Metwally, Y.M. (2009), "Utilization of lime for stabilization soft clay soil of high organic content", Geotech. Geol. Eng., 27, 105-113. https://doi.org/10.1007/s10706-008-9215-2.
- Sas, W., Gluchowski, A., Gabrys, K., Sobol, E. and Szymanski, A. (2017), "Resilient modulus characterization of compacted cohesive subgrade soil", Appl. Sci., 7(4), 370. https://doi.org/10.3390/app7040370.
- Seed, H.B. and Idriss, I.M. (1970), "Soil moduli and damping factors for dynamic response analyses", Report EERC70-10, Earthquake Engineering Research Center, University of California, Berkeley, California, U.S.A.
- Sharma, L.K., Sirdesai, N.N., Sharma, K.M. and Singh, T.N. (2018), "Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study", Appl. Clay Sci., 152, 183-195. https://doi.org/10.1016/j.clay.2017.11.012.
- Sherwood, P.T. (1993), Soil Stabilization with Cement and Lime, in State of Art Review, HMSO, London, U.K.
- Sweeney, D.A., Wong, D.K.H. and Fredlund, D.G. (1988), "Effect of lime on highly plastic clay with special emphasis on aging", Transport. Res. Rec., 1190, 13-23.
- Tebaldi, G., Orazi, M. and Orazi, U.S. (2016), "Effect of freeze-thaw cycles on mechanical behavior of lime-stabilized soil", J. Mater. Civ. Eng., 28(6), 06016002. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001509.
- Turkoz, M., Savas, H., Acaz, A. and Tosun, H. (2014), "The Effect of magnesium chloride solution on the engineering properties of clay soil with expansive and dispersive characteristics", Appl. Clay Sci., 101, 1-9. https://doi.org/10.1016/j.clay.2014.08.007.
- Vucetic, M. and Dobry, R. (1991), "Effect of soil plasticity on cyclic response", J. Geotech. Eng., 117(1), 89-107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89).
- Yilmaz, Y., Eun, J. and Goren, A. (2018), "Individual and combined effect of Portland cement and chemical agents on unconfined compressive strength for high plasticity clayey soils", Geomech. Eng., 16(4), 375-384. https://doi.org/10.12989/gae.2018.16.4.375.
- Yilmaz, F. and Fidan, D. (2018), "Influence of freeze-thaw on strength of clayey soil stabilized with lime and perlite", Geomech. Eng., 14(3), 301-306. https://doi.org/10.12989/gae.2018.14.3.301.
- Wang, M., Kong, L., Zhao, C. and Zang, M. (2012), "Dynamic characteristics of lime-treated expansive soil under cyclic loading", J. Rock Mech. Geotech. Eng., 4(4), 352-359. https://doi.org/10.3724/SP.J.1235.2012.00352.
Cited by
- Microscopic Mechanism of Cement Improving the Strength of Lime-Fly Ash-Stabilized Yellow River Alluvial Silt vol.2020, 2019, https://doi.org/10.1155/2020/9649280
- Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine vol.25, pp.2, 2019, https://doi.org/10.12989/gae.2021.25.2.143