그림 1. 제안하는 얼굴 특징점 검출 네트워크의 개요 Fig. 1. Overview of proposed facial landmark detection network
그림 2. 제안하는 방법(ResNet50-Int)과 비교 모델들의 NME 곡선 Fig. 2. NME curves of proposed method (ResNet50-Int) and baseline models
그림 3. 제안하는 모델의 얼굴 특징점 검출 결과 (a) 성공적으로 검출한 경우 (b) 검출에 실패한 경우 Fig. 3. Examples of facial landmarks detected by proposed method (a) success cases (b) failure cases
표 1. 제안하는 네트워크의 세부 구성 Table 1. Detail of the proposed network
표 2. 각 모델에 대한 AUC(%) Table 2. AUC (%) of each model
표 3. 각 모델의 프레임 당 처리 시간 (ms) Table 3. Processing time per frame (ms) of each model
References
- A. Bulat and G. Tzimiropoulos, "How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks)," IEEE International Conference on Computer Vision, pp. 1021-1030, 2017.
- X. Sun, B. Xiao, F. Wei, S. Liang, and Y. Wei, "Integral human pose regression," European Conference on Computer Vision, pp. 529-545, 2018.
- Y. Sun, X. Wang, and X. Tang, "Deep convolutional network cascade for facial point detection," IEEE Conference on Computer Vision and Pattern Recognition, 2013.
- E. Zhou, H. Fan, Z. Cao, Y. Jiang, and Q. Yin, "Extensive facial landmark localization with coarse-to-fine convolutional network cascade," IEEE International Conference on Computer Vision Workshops, 2013.
- Z. Zhang, P. Luo, C. C. Loy, and X. Tang, "Facial landmark detection by deep multi-task learning," European Conference on Computer Vision, 2014.
- R. Ranjan, V. M. Patel, and R. Chellappa, "Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 121-135. 2019. https://doi.org/10.1109/TPAMI.2017.2781233
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in Neural Information Processing Systems, pp. 1097-1105, 2012.
- X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li, "Face alignment across large poses: A 3d solution," IEEE Conference on Computer Vision and Pattern Recognition, pp. 146-155, 2016.
- C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, "300 faces in-the-wild challenge: Database and results," Image and Vision Computing, vol. 47, pp. 3-18, 2016. https://doi.org/10.1016/j.imavis.2016.01.002
- S. Zaferiou, "The menpo facial landmark localisation challenge," IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017.
- J. Shen, S. Zafeiriou, G. G. Chrysos, J. Kossaifi, G. Tzimiropoulos, and M. Pantic, "The first facial landmark tracking in-the-wild challenge: Benchmark and results," IEEE International Conference on Computer Vision Workshops, 2015.
- V. Jain and E. Learned-Miller, "Fddb: A benchmark for face detection in unconstrained settings," UMass Amherst Technical Report, 2010.
- M. Kostinger, P. Wohlhart, P. M. Roth, and H. Bischof, "Annotated facial landmarks in the wild: A large-scale, real world database for facial landmark localization," IEEE International Conference on Computer Vision Workshops, 2011.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," International Conference on Learning Representations, 2015.
- A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, "Automatic differentiation in pytorch," Advances in Neural Information Processing Systems Workshops, 2017.
- A. Newell, K. Yang, and J. Deng, "Stacked hourglass network for human pose estimation," European Conference on Computer Vision, pp. 483-499, 2016.