DOI QR코드

DOI QR Code

낙동강 중하류에서 이산화탄소 순배출 플럭스 산정 및 영향인자 분석

Estimation of CO2 Net Atmospheric Flux in the Middle and Lower Nakdong River, and Influence Factors Analysis

  • Lee, Eunju (Department of Environmental Engineering, Chungbuk University) ;
  • Chung, Sewoong (Department of Environmental Engineering, Chungbuk University) ;
  • Park, Hyungseok (Department of Environmental Engineering, Chungbuk University) ;
  • Kim, Sungjin (Department of Environmental Engineering, Chungbuk University) ;
  • Park, Daeyeon (Department of Environmental Engineering, Chungbuk University)
  • 투고 : 2019.02.25
  • 심사 : 2019.07.15
  • 발행 : 2019.07.30

초록

Carbon dioxide($CO_2$) emission from rivers to the atmosphere is a key component in the global carbon cycle. Most of the rivers are supersaturated with $CO_2$. At a global scale, the amount of $CO_2$ emission from rivers is reported to be five-fold greater than that from lakes and reservoirs, but relevant data are rare in Korea. The objectives of this study is to estimate the $CO_2$ net atmospheric flux(NAF) from the upstream of Gangjeong-Goryeong Weir(GGW), Dalseong Weir(DSW), Hapcheon-Changnyeong Weir(HCW), and Changnyeong-Haman Weir(CHW) located in Nakdong River South Korea) using field and laboratory experiments and to apply data mining techniques to develop parsimonious prediction models that can be used to estimate $CO_2$ NAF with physical and water quality variables that can be collected easily. As a result, the study sites were all heterotrophic systems that often released $CO_2$ to the atmosphere, except when the algal photosynthesis was active.The median $CO_2$ NAF was minimum $391.5mg-CO_2/m^2$ day at GGW and maximum $1472.7mg-CO_2/m^2$ day at DSW. The $CO_2$ NAF showed a negative correlation with pH and Chl-a since the overgrowth of the algae consumed $CO_2$ in the water and increased the pH. As the parsimonious multiple regression model and random forest model developed, this study showed an excellent performance with the $Adj.R^2$ value higher than 0.77 in all weirs. Thus, these methods can be used to estimate $CO_2$ NAF in the river even if there is no $pCO_2$ measurement data.

키워드

SJBJB8_2019_v35n4_316_f0001.png 이미지

Fig. 1. The map of study areas and locations of sampling site.

SJBJB8_2019_v35n4_316_f0002.png 이미지

Fig. 2. The correlation matrices of observed variables.

SJBJB8_2019_v35n4_316_f0003.png 이미지

Fig. 3. The variations of CO2 net atmospheric flux (NAF) during the monitoring period.

SJBJB8_2019_v35n4_316_f0004.png 이미지

Fig. 4. The boxplots of comparison for (a) kg and (b) CO2 NAF for each equations

SJBJB8_2019_v35n4_316_f0005.png 이미지

Fig. 5. Correlation matrices of water velocity and CO2 NAF.

SJBJB8_2019_v35n4_316_f0006.png 이미지

Fig. 6. Bi-plots of PCA results

SJBJB8_2019_v35n4_316_f0007.png 이미지

Fig. 7. The partial dependence plots showing the marginal effects of a single variable on NAF

SJBJB8_2019_v35n4_316_f0008.png 이미지

Fig. 8. The comparison of performances of the best SMLR and RF models

Table 1. The ranges of pCO2 in streams and rivers reported in previous studies

SJBJB8_2019_v35n4_316_t0001.png 이미지

Table 2. The location of sampling sites

SJBJB8_2019_v35n4_316_t0002.png 이미지

Table 3. Water quality conditions of the study sites during the study period

SJBJB8_2019_v35n4_316_t0003.png 이미지

Table 4. The description statistics of the observed weirs variables

SJBJB8_2019_v35n4_316_t0004.png 이미지

Table 5. The summary statistics of estimated CO2 NAF for each weir

SJBJB8_2019_v35n4_316_t0005.png 이미지

Table 6. The comparison of the CO2 NAF estimated in this study with previous studies

SJBJB8_2019_v35n4_316_t0006.png 이미지

Table 7. The description statistics of summary statistics of kg and CO2 NAF for different gas transfer velocityEquations

SJBJB8_2019_v35n4_316_t0007.png 이미지

Table 8. Subset regression variables that best matched the performance criterion of weirs

SJBJB8_2019_v35n4_316_t0008.png 이미지

Table 9. The best SMLR models and parsimonious RF models for estimating CO2 NAF for each weir

SJBJB8_2019_v35n4_316_t0009.png 이미지

참고문헌

  1. Abril. G., Bouillon. S., Darchambeau. F., Teodoru. C. R., Marwick. T. R., Tamooh. F., Ochieng O. F., Geeraert. N., Deirmendjian. L., Polsenaere. P., and Borges, A. V. (2015). Technical Note : Large overstimation of $pCO_2$ calculated from pH and alkalinity in acidic, organic-rich freshwaters, Biogeosciences, 12, 67-78. https://doi.org/10.5194/bg-12-67-2015
  2. American Public Health Association, American Water Works Association and Water Environment Federation (APHA, AWWA, WEF). (2005). Standard methods for the examination of water and wastewater, American Public Health Association, American Water Works Association and Water Environment Federation, Washington, D. C., USA.
  3. Bae, K. T. and Kim, C. J. (2016). An agricultural estimat price model of artificial neural network by optimizing hidden layer, Journal of Korea Institute of Information Tecjnology, 14(12), 161-169. https://doi.org/10.14801/jkiit.2016.14.12.161
  4. Battin, T. J., Luyssaert. S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and Tranvik, L. J. (2009). The boundless carbon cycle, Nature geoscience, 2, 598-600. https://doi.org/10.1038/ngeo618
  5. Box, G. E. P. and Cox, D. R. (1964). An analysis of transformaions, Journal of the Oyal statistical Society, Series B (Methodological), 26(2), 211-252. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
  6. Breiman, L. and Cutler, A. (2015). Breiman and Cutler's random forests for classification and regression, http://www.stat.berkeley.edu/-breiman/RandomForests (accessed Dec. 2018)
  7. Butman, D. and Raymond, P. A. (2011). Supplementary information for : Significant efflux of carbon dioxide from streams and rivers in the United States, Nature Geoscience, 4(12), 839-842. https://doi.org/10.1038/ngeo1294
  8. Choi, K. S., Kim, B. C., Kim, H. B., and Sa, S. H. (2000). Realationships between organic carbon and CODMn in a deep reservoir, lake Soyang, Korea, Korean Journal of Limnology, 33(4), 328-335.
  9. Chung, S. W., Lee, H. S., and Jung Y. R. (2008). The effect of hydrodynamic flow regimes on the algal bloomin a monomictic reservoir, Water Science & Technology, 58(6), 1291-1298. https://doi.org/10.2166/wst.2008.482
  10. Chung, S. W., Park, H. S., and Yoo, J. S. (2018). Variability of $pCO_2$ in surface waters and development of predition model, Science of The Total Environment, 622-623, 1109-1117. https://doi.org/10.1016/j.scitotenv.2017.12.066
  11. Chung, S. W., Park, H. S., Yoo, J. S., and Schladow, S. G. (2016). Estimation of $CO_2$ emission from a eutrophic reservoir in temperate region, Journal of Korean Society on Water Environment, 32(5), 433-441. [Korean Literature] https://doi.org/10.15681/KSWE.2016.32.5.433
  12. Cole. J. J. and Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of $SF_6$, Limnology and Oceanography, 647-656.
  13. Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K. (1994). Carbon dioxide supersaturation in the surface waters of lakes, Science, 265(5178), 1568-1570. https://doi.org/10.1126/science.265.5178.1568
  14. Cole, J. J. and Prairie, Y. T. (2009). Dissolved $CO_2$, Encyclopedia of Inland Water, 2, 30-34. https://doi.org/10.1016/B978-012370626-3.00091-0
  15. Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J. (2007). Plumbing the global carbon cycle: Intergrating inland waters into the terrestrial carbon budget, Ecosystem, 10, 171-184.
  16. Dos Santos, M. A., Rosa, L. P., Sikar, B., Sikar, E., and dos Santos, E. O. (2006). Gross greenhouse gas fluxes from hydro-power reservoir compared to thermos-power plants, Energy Policy, 34, 481-488. https://doi.org/10.1016/j.enpol.2004.06.015
  17. Einsele, G., Yan, J., and Hinderer, M. (2001). Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget, Global and Planetary Change, 30, 167-195. https://doi.org/10.1016/S0921-8181(01)00105-9
  18. Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G., Bolker, B., Ellison, S. Firth, D., Friendly, M., Gorjanc, G., Graves, S. Heiberger, R., Laboissiere, R., Maechler, M., Monette, G., Murdoch, D., Nilson, H., Ogle, D., Ripley, B., Venables, W., Walker, S., Winsemius, D., and R-Core. (2019). Companion to Applied Regression, https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html (accessed May. 2019)
  19. Guerin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., and Delmas, R. (2006). Methane and carbon dioxide emissions from tropical reservoir: significance of downstream rivers, Geophysical Research Letters., 33, L21407. https://doi.org/10.1029/2006GL027929
  20. Hanson, P. C., Pace, M. L., Carpenter, S. R., Cole, J. J., and Stanley, E. H. (2015). Integrating landscape carbon cycling:research needs for resolving organic carbon budgets of lakes, Ecosystems, 18, 363-375. https://doi.org/10.1007/s10021-014-9826-9
  21. Hebbali, A. (2018). Tools for building OLS regression models, https://olsrr.rsquaredacademy.com (accessed Nov. 2018)
  22. Hope, D., Kratz, T. K., and Riera, J. L. (1996). Relationship between P-$CO_2$ and dissolved organic carbon in northern Wisconsin lakes, Journal of Environmental Quality, 25, 1442-1445. https://doi.org/10.2134/jeq1996.00472425002500060039x
  23. Intergovernmental Panel on Climate Change (IPCC). (2013). Climate change 2013: The physical science basis, Working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change.
  24. Jin, H. J., Yoon, T. K., Begum, M. S., Lee, E. J., Oh, N. H., Kang, N. G., and Park, J. H. (2018). Longitudinal discontinuities in riverine greenhouse gas dynamics generated by dams and urban wastewater, Biogeoscience, 15, 6349-6369. https://doi.org/10.5194/bg-15-6349-2018
  25. Jung, S. J., Lee, D. J., Hwang, K. S., Lee, K. H., Choi, K. C., Im, S. S., Lee, Y. H., Lee, J. Y., and Lim, B. J. (2012). Evaluation of pollutant characteristics in yeongsan river using multivariate analysis, The Korean Society of Limnology, 45(4), 368-377. [Korean Literature] https://doi.org/10.11614/KSL.2012.45.4.368
  26. Korea Meteorological Administration (KMA). (2017-2018). Korea Meteorological Administration (KMA), https://data.kma.go.kr/ (accessed Dec. 2018)
  27. Kortelainen, P., Rantakari, M., Huttunen, J., Mattson, T., ALM, J., Juutinen, S., Larmola, T., Silvola, J., and Martikainene, P. (2006). Sediment respiration and lake trophic state are important predictors of large $CO_2$ evasion from small boreal lakes, Global Change Biology, 12, 1554-1567. https://doi.org/10.1111/j.1365-2486.2006.01167.x
  28. Kuhn, M. (2011). The caret package, https://cran.r-project.org/package=caret (accessed Apr. 2019)
  29. K-water. (2018a). Analysis on the mechanism of algal bloom and seasonal succession, K-water. [Korean Literature]
  30. K-water. (2018b). Water information portal (My water), http://water.or.kr/index.do/ (accessed Dec. 2018)
  31. Lewis, E. and Wallace, D. (1998). Program developed for $CO_2$ system calculations, Department of applied science brookhaven national laboratory upton, New york.
  32. Li, S., Lu, X. X., and Bush, R. T. (2013). $CO_2$ partial pressure and $CO_2$ emission in the Lower Mekong River, Journal of Hydrology, 504(11), 40-56. https://doi.org/10.1016/j.jhydrol.2013.09.024
  33. Li, S., Lu, X. X., He, M., Zhou, Y., Li, L., and Ziegler, A. D. (2012). Daily $CO_2$ partial pressure and $CO_2$ outgassing in the upper Yangtze River basin: A case study of the Longchuan River, China, Journal of Hydrology, 466-467, 141-150. https://doi.org/10.1016/j.jhydrol.2012.08.011
  34. Liaw, A. and Wiener, M. (2002). Classification and regression by random Forest, R News, 2, 18-22.
  35. Ministry of Environment (ME). (2017-2018). Water Environment Information System (WEIS), http://water.nier.go.kr/ (accessed Dec. 2018).
  36. Pacheco, F. S., Roland, F., and Downing, J. A. (2013). Eutrophication reverses whole-lake carbon budgets, Inland Waters, 4, 41-48. https://doi.org/10.5268/IW-4.1.614
  37. Park, H. S. and Chung, S. W. (2018). $pCO_2$ dynamics of stratified reservoir in temperate zone and $CO_2$ pluse emissions during turnover events, Water, 10, 1347. https://doi.org/10.3390/w10101347
  38. Qu, B., Aho, K. S., Li, C., Kang, S., Sillanpaa, M., Yan, F., and Raymond, P. A. (2017). Greenhouse gases emissions in rivers of the Tibetan plateau, Scientific Reports, 7(1), 16573. https://doi.org/10.1038/s41598-017-16552-6
  39. Rajaretnam, T. (2016). Statistics for social sciences, Sage publications.
  40. Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Durr, H., Meybeck, M., Ciais, P., and Guth, P. (2013). Global carbon dioxide emissions from inland waters, Nature, 503, 355-359. https://doi.org/10.1038/nature12760
  41. Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mlholland, P., Laursen, A. E., McDowell, W. H., and Newbold, D. (2012). Scaling the gas transfer velocity and hydraulic geometry in streams and samll rivers, Limnology and Oceanography, 2, 41-53.
  42. Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., and Hess, L. L. (2002). Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric $CO_2$, Nature, 416, 617-620. https://doi.org/10.1038/416617a
  43. Seo, D. I. (1998). Stratification Characteristics and Water Quality Management Strategies of Daechung Lake, Journal of Korean Society of Environmental Engineers, 20(9), 1219-1234. [Korean Literature]
  44. Stallard, R. F. (1998). Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial, Global biogeochemical cycle, 12(2), 231-257. https://doi.org/10.1029/98GB00741
  45. Sobek, S., Algesten, G., Bergstrom, A., and Jansson, M. (2003). The catchment and climate regulation of $pCO_2$ in boreal lakes, Global Change Biology, 9, 630-641. https://doi.org/10.1046/j.1365-2486.2003.00619.x
  46. Soltani. N., Khodaei, K., Alnajar, N., Shahsavari, A., and Ashja, A. A. (2012). Cyanobacterial community patterns as water quality bioindicators, Iranian Journal of Fisheries Science, 11(4), 876-891.
  47. St. Louis, V. L., Kelly C. A., Duchemin, E., Rudd, J. W. M., and Rosenberg, D. M. (2000). Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate, Bioscience, 50(9), 766-775. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
  48. Tadonleke, R. D., Marty, J., and Planas, D. (2012). Assessing factors underlying variation of $CO_2$ emissions in boreal lakes vs. reservoirs, FEMS Microbiology Ecology, 79, 282-297. https://doi.org/10.1111/j.1574-6941.2011.01218.x
  49. Teodoru, C. R., Del Giorgio, P. A., Prairie, Y. T., and Camire, M. (2009). Patterns in $pCO_2$ in boreal streams and rivers of northern Quebec, Canada, Global Biogeochem Cycles, 23.
  50. Tranvik, L. J., Downing J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainene, P. L., Kustser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., Wachenfeldt, E., and Weyhenmeyer, G. A. (2009). Lakes and reservoirs as regulators of carbon cycling and climate, Limnology and Oceanography, 54(6), 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
  51. UN Educational, Scientific and Cultural Organization/International Hydropower Association (UNESCO/IHA). (2010). GHG measurement guidelines for freshwater reservoirs, The nternational hydropower association.
  52. Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean revisited, Limnology and Oceanography: Methods, 12, 351-362. https://doi.org/10.4319/lom.2014.12.351
  53. Wetzel, R, G. (2001). Lake and River Ecosystems, Academic Press, Limnology, New York.
  54. Weyhenmeyer, G. A., Kosten, S., Wallin, M. B., Tranvik, L. J., Jeppesen, E., and Roland, F. (2015). Significant fraction of $CO_2$ emissions from boreal lakes derived from hydrologic inorganic carbon inputs, Nature Geoscience, 8, 933-936 https://doi.org/10.1038/ngeo2582
  55. Winslow, L., Read, J., Woolway R., Brentrup, J., Leach, T., Zwart, J., Albers, S., and Collinge, D. (2018). Lake Physics Tools, https://github.com/GLEON/rLakeAnalyzer/issues (accessed Mar. 2018)
  56. Yu, S. J., Hwang, J. Y., Yoon, Y. S., and Han, E. J. (1999). Index of Organic Matter in Stream and Lake, Journal of Enviornmental Impact Assessment, 8(1), 81-92. [Korean Literature]
  57. Yoon, T. K., Jin, H. J., Begum, M. S., Kang, N. G., and Park, J. H. (2017). $CO_2$ Outgassing from an Urbanized River System Fueled by Wastewater Treatment Plant Effluents, Environmental Science & Technology, 51, 10459-10467. https://doi.org/10.1021/acs.est.7b02344