Fig. 1. Effect of zinc [Zn (2.5 and 5.0 mg/kg)] with other plant nutrients on shoot attributes of tomato plants under the stress of Alternaria solani (AS) after 30 days of pathogen inoculation. Error bars indicate standard errors of the mean of three replicates. Values with different letters show a significant difference (P ≤ 0.05) as determined by LSD-test.
Fig. 2. Effect of zinc [Zn (2.5 & 5.0 mg/kg)] in combination with plant nutrients on root attributes of tomato plants under the stress of Alternaria solani (AS) after 30 days of pathogen inoculation. Error bars indicate standard errors of the mean of three replicates. Values with different letters show a significant difference (P ≤ 0.05) as determined by LSD-test.
Fig. 3. A schematic depiction of the interface and overlapping signaling pathways at the cellular level in tomato plants due to the basal application of Zn + NPK under Alternaria solani stress. To fight off pathogens, defense response triggers a battery of reactions including enhanced ROS production through downstream signaling by RBOHs localized at the plasma membrane, cytosolic MAPKs and others. ROS accumulation (H2O2) will diffuse into the cytosol and activate several plant defense responses including SA signaling and other phytohormones such as GA, JA & ET have a significant role during biotic stress tolerance in a tomato plant. However, ROS-scavenging systems (anti-oxidants) help to finally tune the ROS level. ROS, reactive oxygen species; SA, salicylic acid, GA, Gibberellic acid; JA, Jasmonic acid; ET, Ethylene; MAPKs, mitogen-activated protein kinase.
Table 1. Treatments designed for the experiment
Table 2. Disease rating scale for the assessment of early blight of tomato
Table 3. Bilateral effect of Zn (2.5 and 5.0 mg/kg) with plant nutrients on disease incidence (DI) and percent severity index (PSI) in tomato plants inoculated with Alternaria solani (AS) at the 45th day after transplantation
Table 4. Bilateral effect of zinc (Zn) levels with plant nutrients on physiological attributes in tomato plants inoculated with Alternaria solani (AS) after 15-D of transplantation
Table 5. Bilateral effect of zinc (Zn) levels with plant nutrients on defense-related enzymes in tomato plants inoculated with Alternaria solani (AS) after 15-D of transplantation
References
- Adhikari, P., Oh, Y. and Panthee, D. R. 2017. Current status of early blight resistance in tomato: An update. Int. J. Mol. Sci. 18:E2019. https://doi.org/10.3390/ijms18102019
- Aghofack-Nguemezi, J., Noumbo, G. T. and Nkumbe, C. N. 2014. Influence of calcium and magnesium based fertilizers on fungal diseases, plant growth parameters and fruit quality of three varieties of tomato (Solanum lycopersicum). J. Sci. Technol. 34:9-20. https://doi.org/10.4314/just.v34i1.2
- Anderson, J. P., Gleason, C. A., Foley, R. C., Thrall, P. H., Burdon, J. B. and Singh, K. B. 2010. Plants versus pathogens: an evolutionary arms race. Funct. Plant Biol. 37:499-512. https://doi.org/10.1071/FP09304
- Anees, M. A., Ali, A., Shakoor, U., Ahmed, F., Hasnain, Z. and Hussain, A. 2016. Foliar applied potassium and zinc enhances growth and yield performance of maize under rainfed conditions. Int. J. Agric. Biol. 18:1025-1032. https://doi.org/10.17957/IJAB/15.0204
- Arruda, S. C. C., Silva, A. L. D., Galazzi, R. M., Azevedo, R. A. and Arruda, M. A. Z. 2015. Nanoparticles applied to plant science: a review. Talanta 131:693-705. https://doi.org/10.1016/j.talanta.2014.08.050
- Awan, Z. A., Shoaib, A. and Khan, K. A. 2018. Variations in total phenolics and antioxidant enzymes cause phenotypic variability and differential resistant response in tomato genotypes against early blight disease. Sci. Hortic. 239:216-223. https://doi.org/10.1016/j.scienta.2018.05.044
- Chai, H., Yao, J., Sun, J., Zhang, C., Liu, W., Zhu, M. and Ceccanti, B. 2015. The Effect of Metal Oxide Nanoparticles on Functional Bacteria and Metabolic Profiles in Agricultural Soil. Bull. Environ. Contam. Toxicol. 94:490-495. https://doi.org/10.1007/s00128-015-1485-9
- Cheema, S. and Sommerhalter, M. 2015. Characterization of polyphenol oxidase activity in Ataulfo mango. Food Chem. 171:382-387. https://doi.org/10.1016/j.foodchem.2014.09.011
- Chen, Z., Zheng, Z., Huang, J., Lai, Z. and Fan, B. 2009. Biosynthesis of salicylic acid in plants. Plant Signal. Behav. 4:493-496. https://doi.org/10.4161/psb.4.6.8392
- Cheng, S.-X., Xie, C.-Q., Wang, Q.-N., He, Y. and Shao, Y.-N. 2014. Different wavelengths selection methods for identification of early blight on tomato leaves by using hyperspectral imaging technique. Spectrosc. Spect. Anal. 34:1362-1366 (in Chinese).
- Collin-Hansen, C., Andersen, R. A. and Steinnes, E. 2005. Damage to DNA and lipids in Boletus edulis exposed to heavy metals. Mycol. Res. 109:1386-1396. https://doi.org/10.1017/S0953756205004016
- Dehgahi, R., Subramaniam, S., Zakaria, L., Joniyas, A., Firouzjahi, F. B., Haghnama, K. and Razinataj, M. 2015. Review of research on fungal pathogen attack and plant defense mechanism against pathogen. Int. J. Sci. Res. Agric. Sci. 2:197-208.
- Dewdar, M. D. H. and Rady, M. M. 2013. Influence of soil and foliar applications of potassium fertilization on growth, yield and fiber quality traits in two Gossypium barbadense L. varieties. Afr. J. Agric. Res. 8:2211-2215. https://doi.org/10.5897/AJAR12.1861
- Dimkpa, C. O. and Bindraban, P. S. 2016. Fortification of micronutrients for efficient agronomic production: a review. Agron. Sustain. Dev. 36:7. https://doi.org/10.1007/s13593-015-0346-6
- Dordas, C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 28:33-46. https://doi.org/10.1051/agro:2007051
- Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: Turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-863. https://doi.org/10.1146/annurev-arplant-042811-105606
- Gannibal, P. B., Orina, A. S., Mironenko, N. V. and Levitin, M. M. 2014. Differentiation of the closely related species. Alternaria solani and A. tomatophila, by molecular and morphological features and aggressiveness. Eur. J. Plant Pathol. 139:609-623. https://doi.org/10.1007/s10658-014-0417-6
- Ghorbani, R., Wilcockson, S., Koocheki, A. and Leifert, C. 2008. Soil management for sustainable crop disease control: a review. Environ. Chem. Lett. 6:149-162. https://doi.org/10.1007/s10311-008-0147-0
- Handiyanti, M., Subandiyah, S. and Joko, T. 2018. Molecular detection of Burkholderia glumae, a causal agent of bacterial panicle blight disease. J. Perlindungan Tanam. Indonesia 22:98-107 (in Indonesian). https://doi.org/10.22146/jpti.30259
- Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Al Mahmud, J., Hossen, M. S., Masud, A. A. C., Moumita and Fujita, M. 2018. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8:31. https://doi.org/10.3390/agronomy8030031
- Huber, D., Romheld, V. and Weinmann, M. 2012. Relationship between nutrition, plant diseases and pests. In: Marschner's mineral nutrition of higher plants. ed. by P. Marschner, pp. 283-298. Academic Press, London, UK.
- Ilyas, A., Ashraf, M. Y., Hussain, M., Ashraf, M., Ahmed, R. and Kamal, A. 2015. Effect of micronutrients (Zn, Cu and B) on photosynthetic and fruit yield attributes of citrus reticulata Blanco var. kinnow. Pak. J. Bot. 47:1241-1247.
- Kant, S., Bi, Y.-M. and Rothstein, S. J. 2011. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot. 62:1499-1509. https://doi.org/10.1093/jxb/erq297
-
Khan, K. A., Shoaib, A., Arshad Awan, Z., Basit, A. and Hussain, M. 2018. Macrophomina phaseolina alters the biochemical pathway in Vigna radiata chastened by
$Zn^{2+}$ and FYM to improve plant growth. J. Plant Interact. 13:131-140. https://doi.org/10.1080/17429145.2018.1441451 - Khattak, S. G., Dominy, P. J. and Ahmad, W. 2016. Effect of Zn as soil addition and foliar application on yield and protein content of wheat in alkaline soil. J. Natl. Sci. Found. Sri Lanka 43:303-312. https://doi.org/10.4038/jnsfsr.v43i4.7965
- Khokon, A. R., Okuma, E., Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C. and Murata, Y. 2011. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant. Cell Environ. 34:434-443. https://doi.org/10.1111/j.1365-3040.2010.02253.x
- Kim, D. S. and Hwang, B. K. 2014. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J. Exp. Bot. 65:2295-2306. https://doi.org/10.1093/jxb/eru109
-
Kurusu, T., Yagala, T., Miyao, A., Hirochika, H. and Kuchitsu, K. 2005. Identification of a putative voltage-gated
$Ca^{2+}$ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J. 42:798-809. https://doi.org/10.1111/j.1365-313X.2005.02415.x - Liljeroth, E., Lankinen, A., Wiik, L., Burra, D. D., Alexandersson, E. and Andreasson, E. 2016. Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials. Crop Prot. 86:42-55. https://doi.org/10.1016/j.cropro.2016.04.003
- Machado, P. P., Steiner, F., Zuffo, A. M. and Machado, R. A. 2018. Could the supply of boron and zinc improve resistance of potato to early blight? Potato Res. 61:169-182. https://doi.org/10.1007/s11540-018-9365-4
- Martos, S., Gallego, B., Cabot, C., Llugany, M., Barcelo, J. and Poschenrieder, C. 2016. Zinc triggers signaling mechanisms and defense responses promoting resistance to Alternaria brassicicola in Arabidopsis thaliana. Plant Sci. 249:13-24. https://doi.org/10.1016/j.plantsci.2016.05.001
- Mathpal, B., Srivastava, P. C., Shankhdhar, D. and Shankhdhar, S. C. 2015. Improving key enzyme activities and quality of rice under various methods of zinc application. Physiol. Mol. Biol. Plants 21:567-572. https://doi.org/10.1007/s12298-015-0321-3
- Minocha, R., Martinez, G., Lyons, B. and Long, S. 2009. Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species. Can. J. For. Res. 39:849-861. https://doi.org/10.1139/X09-015
- Mona, E. E., Ibrahim, S. A. and Manal, F. M. 2012. Combined effect of NPK levels and foliar nutritional compounds on growth and yield parameters of potato plants (Solanum tuberosum L.). Afr. J. Microbiol. Res. 6:5100-5109.
- Nashwa, S. M. A. and Abo-elyousr, K. A. M. 2012. Evaluation of various plant extracts against the early blight disease of tomato plants under greenhouse and field conditions. Plant Protect. Sci. 48:74-79. https://doi.org/10.17221/14/2011-PPS
- Noulas, C., Tziouvalekas, M. and Karyotis, T. 2018. Zinc in soils, water and food crops. J. Trace Elem. Med. Biol. 49:252-260. https://doi.org/10.1016/j.jtemb.2018.02.009
- Pandey, K. K., Pandey, P. K., Kalloo, G. and Banerjee, M. K. 2003. Resistance to early blight of tomato with respect to various parameters of disease epidemics. J. Gen. Plant Pathol. 69:364-371. https://doi.org/10.1007/s10327-003-0074-7
- Pomory, C. M. 2008. Color development time of the Lowry protein assay. Anal. Biochem. 378:216-217. https://doi.org/10.1016/j.ab.2008.04.015
- Potarzycki, J. 2011. Effect of magnesium or zinc supplementation at the background of nitrogen rate on nitrogen management by maize canopy cultivated in monoculture. Plant Soil Environ. 57:19-25. https://doi.org/10.17221/77/2010-PSE
- Reguera, M., Bonilla, I. and Bolanos, L. 2010. Boron deficiency results in induction of pathogenesis-related proteins from the PR-10 family during the legume-rhizobia interaction. J. Plant Physiol. 167:625-632. https://doi.org/10.1016/j.jplph.2009.11.017
- Rehman, A., Farooq, M., Naveed, M., Nawaz, A. and Shahzad, B. 2018. Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur. J. Agron. 94:98-107. https://doi.org/10.1016/j.eja.2018.01.017
- Sarkar, D., Maji, R. K., Dey, S., Sarkar, A., Ghosh, Z. and Kundu, P. 2017. Integrated miRNA and mRNA expression profiling reveals the response regulators of a susceptible tomato cultivar to early blight disease. DNA Res. 24:235-250. https://doi.org/10.1093/dnares/dsx003
- Senbayram, M., Gransee, A., Wahle, V. and Thiel, H. 2015. Role of magnesium fertilisers in agriculture: Plant-soil continuum. Crop Pasture Sci. 66:1219-1229. https://doi.org/10.1071/CP15104
- Sharma, P., Jha, A. B., Dubey, R. S. and Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:217037.
- Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. and Gobi, T. A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. https://doi.org/10.1186/2193-1801-2-587
- Shen, Z., Chen, Z., Hou, Z., Li, T. and Lu, X. 2015. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front. Environ. Sci. Eng. 9:912-918. https://doi.org/10.1007/s11783-015-0789-7
- Shi, R., Shuford, C. M., Wang, J. P., Sun, Y. H., Yang, Z., Chen, H. C., Tunlaya-Anukit, S., Li, Q., Liu, J., Muddiman, D. C., Sederoff, R. R. and Chiang, V. L. 2013. Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta 238:487-497. https://doi.org/10.1007/s00425-013-1905-1
- Sinsabaugh, R. L. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42:391-404. https://doi.org/10.1016/j.soilbio.2009.10.014
- Song, Y., Wang, R., Wei, X., Lu, Y., Tang, Z., Wu, G., Su, Y. and Zeng, R. 2011. Mechanism of tomato plants enhanced disease resistance against early blight primed by arbuscular mycorrhizal fungus Glomus versiforme. J. Appl. Ecol. 22:2316-2324 (in Chinese).
- Sten, J., Mahapatra, S. and Das, S. 2017. Effect of different levels of NPK on foliar diseases of potato under different fertility gradient soil in field Effect of different levels of NPK on foliar diseases of potato under different fertility gradient soil in field. J. Crop Weed 13:151-156.
- Sugawara, E. and Nikaido, H. 2014. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob. Agents Chemother. 58:7250-7257. https://doi.org/10.1128/AAC.03728-14
- Tripathy, B. C. and Oelmuller, R. 2012. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 7:1621-1633. https://doi.org/10.4161/psb.22455
- Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y. and Gritsanapan, W. 2013. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod. 44:566-571. https://doi.org/10.1016/j.indcrop.2012.09.021
- Weydert, C. J. and Cullen, J. J. 2010. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 5:51-66. https://doi.org/10.1038/nprot.2009.197
- Wissuwa, M. 2003. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol. 133:1947-1958. https://doi.org/10.1104/pp.103.029306