DOI QR코드

DOI QR Code

Heterogeneous Network Gateway Architecture and Simulation for Tactical MANET

전술 에드혹 환경에서 이종망 게이트웨이 구조 및 시뮬레이션 연구

  • Received : 2019.02.01
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

The tactical mobile ad-hoc network(MANET) consists of distributed autonomous networks between individual ground nodes, which is effective in terms of network survivability and flexibility. However, due to constraints such as limited power, terrain, and mobility, frequent link disconnection and shadow area may occur in communication. On the other hand, the satellite network has the advantage of providing a wide-area wireless link overcoming terrain and mobility, but has limited bandwidth and high-latency characteristic. In the future battlefield, an integrated network architecture for interworking multi-layer networks through a heterogeneous network gateway (HNG) is required to overcome the limitations of the existing individual networks and increase reliability and efficiency of communication. In this paper, we propose a new HNG architecture and detailed algorithm that integrates satellite network and the tactical MANET and enables reliable data transfer based on flow characteristics of traffic. The simulations validated the proposed architecture using Riverbed Modeler, a network-level simulator.

전술 에드혹 환경은 개별 지상 노드 간 분산적인 형태의 자율망으로 구성되므로 네트워크의 생존 가능성 및 유연성 측면에서 효과적이나 기동 간 통신 시 제한된 출력, 지형특성, 이동성 등의 제약으로 인하여 잦은 링크 단절 및 음영지역이 발생할 수 있다. 반면 위성 통신망은 지상 기동 망에 비해 지형특성과 이동성을 극복한 광역 무선 링크를 제공할 수 있는 장점이 있으나 상대적으로 한정된 대역폭 및 고지연 특성의 망이다. 미래 전장 환경에서 기존의 단독망 형태의 제약사항을 극복하고 지휘 통제 통신의 신뢰성 및 효율성을 높이기 위해서는 이종망 게이트웨이(Heterogeneous network gateway, HNG)를 중심으로 위성 통신망을 포함한 다계층 통합 네트워크 구조가 요구된다. 본 논문에서는 전술 에드혹 환경에서 위성-전술 에드혹 망을 통합적으로 고려하고 유통되는 임무 트래픽의 플로우 특성에 기반하여 신뢰성 있는 데이터 전달이 가능한 이종망 게이트웨이 구조 및 세부 알고리즘을 제시한다. 시뮬레이션은 네트워크 수준의 시뮬레이터인 Riverbed Modeler를 활용하여 제시하는 구조의 유효성을 확인하였다.

Keywords

SMROBX_2019_v28n2_97_f0001.png 이미지

Fig. 1. Gateway classifications

SMROBX_2019_v28n2_97_f0002.png 이미지

Fig. 2. The basic concept of heterogeneous network gateway for tactical MANET

SMROBX_2019_v28n2_97_f0003.png 이미지

Fig. 3. Flow diagram of HNG routing protocol

SMROBX_2019_v28n2_97_f0004.png 이미지

Fig. 4. Flow diagram of Integrated Metric Calculation

SMROBX_2019_v28n2_97_f0005.png 이미지

Fig. 6. Simulation results for network connectivity with implemented node models

SMROBX_2019_v28n2_97_f0006.png 이미지

Fig. 5. HNG simulation scenario

SMROBX_2019_v28n2_97_f0007.png 이미지

Fig. 7. Simulation results for measure of performance with HNG selection scheme

Table 1. Simulation parameters

SMROBX_2019_v28n2_97_t0001.png 이미지

References

  1. Abduljalil, F. M. and S. K. Bodhe (2007) "A survey of integrating IP mobility protocols and mobile ad hoc networks", IEEE Communications Surveys & Tutorials, 9(1), 14-30. https://doi.org/10.1109/COMST.2007.358969
  2. Aggelou, G. N. and R. Tafazolli (2001) "On the relaying capability of next-generation GSM cellular networks", IEEE Personal Communications, 8(1), 40-47. https://doi.org/10.1109/98.904898
  3. AL-Bayati, J. M. H. (2018), "Integrating Wireless Ad Hoc Network with Satellite Network in a Multicast Environment to Support Commlunication Restoration Teams in Disaster Situations", International Journal of Computer Science and Netwrok Security, 18(2), 10-17.
  4. Cavalcanti, D., D. Agrawal, C. Cordeiro, B. Xie and A. Kumar (2005) "Issues in integrating cellular networks WLANs, AND MANETs: a futuristic heterogeneous wireless network", IEEE Wireless Communications, 12(3), 30-41.
  5. Couto. D. S. J. D., D. Aguayo, J. Bicket and R. Morris (2003) "A high-throughput path metric for multihop wireless routing", Proceedings of the 9th annual international conference on Mobile computing and networking, San Diego, USA, 134-146.
  6. Dhaou, R., L. Franck, A. Halchin, E. Dubois and P. Gelard (2015), "Gateway Selection Optimization in Hybrid MANET-Satellite Network", Proceedings of international conference on Wireless and Satellite systems 2015, Bradford, UK, 331-344.
  7. Kanchanasut, K., A. Tunpan, M. A. Awal, D. K. Das, T. Wongsaardsakul and Y. Tsuchimoto (2007) "DUMBONET: a multimedia communication system for collaborative emergency response operations in disaster-affected areas", International Journal of Emergency Management, 4(4), 670-681. https://doi.org/10.1504/IJEM.2007.015736
  8. Kawamoto, Y., H. Nishiyama and N. Kato (2013) "Toward terminal-to-terminal communication networks: A hybrid MANET and DTN approach", Proceedings of 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Berlin, Germany, 228-232.
  9. Kushwah, R., S. Tapaswi, A. Kumar and K. K. Pattanaik (2018), "Gateway load balancing using multiple QoS parameters in a hybrid MANET", Wireless Networks, 24(4), 1071-1082. https://doi.org/10.1007/s11276-016-1391-z
  10. MONET Project (2010), Available at http://monet.tekever.com/ (Accessed January 30. 2019)
  11. Raffelsberger, C. and H. Hellwagner (2013) "A hybrid MANET-DTN routing scheme for emergency response scenarios", Proceedings of 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), San Diego, USA, 505-510.
  12. Shah, R.C., S. Roy, S. Jain and W. Brunette (2003) "Data MULEs: modeling a three-tier architecture for sparse sensor networks", Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications 2003, Anchorage, USA, 30-41.
  13. Whitbeck, J. and V. Conan (2009) "HYMAD: Hybrid DTN-MANET routing for dense and highly dynamic wireless networks", Proceedings of 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops, Kos, Greece, 1-7.
  14. Wu, J., M. Jaseemuddin and A. Esmailpour (2006) "Integrating UMTS and Mobile Ad Hoc Networks", Proceedings of 2006 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, Montreal, Canada, 196-204.
  15. Zadeh, A.N., B. Jabbari, R. Pickholtz and B. Vojcic (2002) "Self-organizing packet radio ad hoc networks with overlay (SOPRANO)", IEEE Communications Magazine, 40(6), 149-157. https://doi.org/10.1109/MCOM.2002.1007421