DOI QR코드

DOI QR Code

A Study on the Measurement of Explosion Range by CO2 Addition for the Process Safety Operation of Propylene

프로필렌의 공정안전 운전을 위한 CO2 첨가량에 따른 폭발범위 측정에 관한 연구

  • Choi, Yu-Jung (Department of Fire Protection Engineering Graduate Student, Pukyong National University) ;
  • Heo, Jong-Man (Department of Fire Protection Engineering Graduate Student, Pukyong National University) ;
  • Kim, Jung-Hun (Kwangmyung Total Engineering) ;
  • Choi, Jae-Wook (Department of Fire Protection Engineering, Pukyong National University)
  • 최유정 (부경대학교 대학원 소방공학과) ;
  • 허종만 (부경대학교 대학원 소방공학과) ;
  • 김정훈 (광명토탈엔지니어링) ;
  • 최재욱 (부경대학교 소방공학과)
  • Received : 2019.04.24
  • Accepted : 2019.07.05
  • Published : 2019.07.31

Abstract

Most facilities that manufacture products made from the hazardous materials operate at high temperatures and pressures. Therefore, there is a risk of fire explosion. In particular, an explosion accident is a major risk factor for facilities with hazardous materials, such as oil, chemical, and gas. Propylene is often used in sites producing basic raw materials and synthetic materials by addition polymerization at petrochemical plants. To prevent an explosion in the business using propylene, the explosion range with the oxygen concentration was calculated according to the changes in temperature and pressure using an inert gas, carbon dioxide. In these measurements, the temperature was $25^{\circ}C$, $100^{\circ}C$, and $200^{\circ}C$ and the amount of carbon dioxide in the container was $1.0kgf/cm^2.G$, $1.5kgf/cm^2.G$, $2.0kgf/cm^2.G$, and $2.5kgf/cm^2.G$. The explosion limit was related to temperature, pressure, and oxygen concentration. The minimum oxygen concentration for an explosion decreased with increasing temperature and pressure. The range of explosion narrowed with decreasing oxygen concentration. In addition, no explosion occurred at concentrations below the minimum oxygen concentration, even with steam and an ignition source of propylene.

위험물질에 의한 제조물을 취급하는 설비와 시설은 대부분 고온, 고압으로 공정을 운전을 한다. 이로 인해 화재폭발로 인한 위험성이 증대되고 있다. 특히, 폭발 사고는 석유 화학 가스설비 등 위험물 시설의 가장 주된 위험요인으로 작용하고 있으며, 그 중, 프로필렌은 석유화학 플랜트의 기초 원료 및 첨가 중합반응에 의한 합성물질을 제조하는 현장에서 많이 사용되고 있다. 산소농도의 변화에 대한 폭발범위를 구함으로써 프로필렌을 사용하는 사업장에서 발생 될 수 있는 폭발을 예방하기 위하여 불활성 가스인 $CO_2$를 이용하여 온도와 압력의 변화에 따라 산소농도의 변화에 대한 폭발범위를 구하였다. 온도는 $25^{\circ}C$, $100^{\circ}C$, $200^{\circ}C$로 변화시켜 측정하였으며, 용기 내 압력을 $1.0kgf/cm^2.G$, $1.5kgf/cm^2.G$, $2.0kgf/cm^2.G$, $2.5kgf/cm^2.G$$CO_2$를 가압시켜 측정하였다. 폭발한계는 온도, 압력 및 산소농도와 관계가 있으며, 온도와 압력이 높아질수록 최소산소농도는 낮아지고, 산소농도가 낮아질수록 폭발범위는 좁아졌다. 또한, 최소산소농도 이하의 농도에서는 프로필렌의 증기와 점화원이 존재하여도 폭발이 발생하지 않는 것을 알 수 있다.

Keywords

SHGSCZ_2019_v20n7_599_f0001.png 이미지

Fig. 1. The picture of experimental apparatus for vapor explosion tester

SHGSCZ_2019_v20n7_599_f0002.png 이미지

Fig. 2. Schematic diagram of experimental apparatus for explosion measurement

SHGSCZ_2019_v20n7_599_f0003.png 이미지

Fig. 3. Relation between oxygen concentration and propylene concentration(at 25 ℃)

SHGSCZ_2019_v20n7_599_f0004.png 이미지

Fig. 4. Relation between oxygen concentration and propylene concentration(at 100 ℃)

SHGSCZ_2019_v20n7_599_f0005.png 이미지

Fig. 5. Relation between oxygen concentration and propylene concentration(at 200 ℃)

SHGSCZ_2019_v20n7_599_f0006.png 이미지

Fig. 6. Relation between oxygen concentration and temperature

Table 1. Characteristics of propylene[15]

SHGSCZ_2019_v20n7_599_t0001.png 이미지

Table 2. Experiment result of explosion limit(at 25 ℃)

SHGSCZ_2019_v20n7_599_t0002.png 이미지

Table 3. Experiment result of explosion limit(at 100 ℃)

SHGSCZ_2019_v20n7_599_t0003.png 이미지

Table 4. Experiment result of explosion limit(at 200 ℃)

SHGSCZ_2019_v20n7_599_t0004.png 이미지

References

  1. E. H. Son, Experiment Investigations on the Characteristics of Explosion Mitigations by Changing the Internal Concentration and Thickness of Multi Layered Water Gel Barriers, Master's thesis, Seoul National University of Technology, Seoul, Korea, pp.3, 2013.
  2. Accident Association of 2017, Korea Gas Safety Corporation, Korea, pp.74.
  3. S. H. Park, Experimental Studies for a Natural Gas Explosion in partially Confined Space, Master's thesis, Seoul National University of Technology, Seoul, Korea, pp.3, 2003.
  4. K. H. Oh, "A Study on the LPG Explosion Characteristics of Non-uniform Concentration", Fire Science and Engineering, Vol.17, No.4, pp.111-116, Dec. 2003.
  5. D. M. Ha, "Appropriateness of MSDS by Means of the Measurement of Combustible Properties of Anisole", Fire Science and Engineering, Vol.29, No.2, pp.20-24, Apr. 2015. DOI: http://dx.doi.org/10.7731/KIFSE.2015.29.2.020
  6. D. M. Ha, K. H. Kim, "A Study of Minimum Autoignition Temperature Behavior(MAITB) of Benzene and n-Hexane Mixture", Fire Science and Engineering, Vol.27, No.1, pp.8-13, Feb. 2013. DOI: http://dx.doi.org/10.7731/KIFSE.2013.27.1.008
  7. J. W. Choi, "A Study on the Spontaneous Ignition Characteristics and Ignition Temperature Estimation of Activated Carbon", Journal of KIIS, Vol.9, No.3, pp.74-81, Sep. 1994.
  8. K. H. Oh, H. S. Kim, C. H. Lee, "A Study on the Explosion Characteristics of Flammable Gases", The Korean Society of Safety, Vol.7, No.3, pp.66-72, Sep. 1992.
  9. J. W. Choi, I. S. Lee, S. T. Park, "The Explosion Characteristics of City Gas on the Change of Oxygen Concentration and Pressure", The Korean Institute for Gas, Vol.9, No.1, pp.38-43, Feb. 2005.
  10. H. Tsurumi, Study on Maximum Safe Gaps with Propane/Hydrogen with Air Mixture, Research Report, Ministry of labour, Japan, pp.1-9.
  11. A. Ohsawa, K. Ishikawa, Spectroscopic Measurements of a Spark Ignition in Methane-Oxygen Mixture, Research Report, Ministry of labour, Japan, pp.79-86.
  12. D. Y. Choi, A Study on Carbon Emissions and Reduction Plan of Natural Gas Plants, Master's thesis, Seoul National University of Science and Technology, Seoul, Korea, pp.9, 2013.
  13. T. G. Kim, A Study on the Explosion Risk and Fire Transmission Situation of Propylene Gas, Master's thesis, Pukyong National University, Busan, Korea, pp.3, 2007.
  14. B. C. Lee, A Study on the Explosion Characteristics of Converted Gas for Surface Heating Treatment, Master's thesis, Pukyong National University, Busan, Korea, pp.12-14, 2005.
  15. MSDS, http://msds.kosha.or.kr/kcic/msdsdetailGet.do, KOSHA.
  16. T. Mizutani, H. Matsui, "Decomposition Flame Propagation Properies of Ozone/Oxygen Mixtures", Loss Prevention in the Process Industries, Vol.14, No.6, pp.559-565, 2001. DOI: https://doi.org/10.1016/S0950-4230(01)00040-7
  17. J. H. Kim, A Study on the Explosion Risk of 2-Ethylhexanoic Acid, Master's thesis, Pukyong National University, Busan, Korea, pp.17-18, 2013.
  18. D. M. Ha, "An Analytical Evaluation of Fire and Explosion Characteristics of Ethylene", Fire Science and Engineering, Vol.23, No.5, pp.53-54, Oct. 2009.
  19. W. K. Kim, J. H. Kim, J. W. Ryu, J. W. Choi, "The Measurement of the Explosion Limit and the Minimum Oxygen Concentration of Gasoline According to Variation in Octane Number", Korean Chemical Engineering Research, Vol.55, No.5, pp.621, 2017. DOI: http://dx.doi.org/10.9713/kcer.2017.55.5.618
  20. H. P. Lee, Y. J. Park, Combustion Engineering. p.9-10, Hwasoomok, 2015.