DOI QR코드

DOI QR Code

열 유동해석을 통한 무선충전기 발열 성능 향상에 관한 연구

A Study on the Thermal Flow Analysis for Heat Performance Improvement of a Wireless Power Charger

  • 김평준 (서연전자 전자신뢰성시험팀) ;
  • 박동규 (한국기술교육대학교 기전융합공학과)
  • Kim, Pyeong-Jun (Electronics Reliability Test Team, Seoyon Electronics) ;
  • Park, Dong-Kyou (Department of Electromechanical Convergence Engineering, Korea University of Technology and Education)
  • 투고 : 2019.04.16
  • 심사 : 2019.07.05
  • 발행 : 2019.07.31

초록

자동차 편의 장치에 대하여 고객들은 높은 효율과 많은 기능을 요구하고 있으며, 이러한 자동차 어플리케이션에 대한 수요가 지속적으로 증가하고 있다. 본 연구에서는 최근 자동차 편의 사양으로 개발된 무선충전기의 PCB(printed circuit board) 발열 성능 향상을 위한 열 유동해석에 관한 연구를 진행하였다. 무선충전기는 PCB의 전력 손실 및 열 저항의 특성 발열에 따라 충전의 성능이 급격히 저하된다. 따라서 열 유동해석 시뮬레이션을 통해 최적의 PCB 설계 및 부품의 실장 위치를 제안하고, 각 설계 단계에서 해석을 통해 디자인을 결정한다. 이후, 실제 환경 조건에서 해석결과 정합성 검증을 위해 시험을 수행하고 결과를 비교 분석한다. 본 논문에서는 HyperLynx Thermal와 FloTHERM 프로그램을 사용하여 PCB 모델링 및 과도 응답 열 유동해석을 수행하였다. 또한, 해석 및 측정 결과의 정합성 검증을 위해 적외선 열화상 카메라를 사용하여 시험을 진행하였다. 최종 결과 비교에서 해석과 시험의 오차는 10 % 이내로 확인되었고, PCB의 발열 성능도 향상되었다.

In automotive application, customers are demanding high efficiency and various functions for convenience. The demand for these automotive applications is steadily increasing. In this study, it has been studied the analysis of heat flow to improve the PCB(printed circuit board) heating performance of WPC (wireless power charger) recently developed for convenience. The charging performance of the wireless charger has been reduced due to power dissipation and thermal resistance of PCB. Therefore, it has been proposed optimal PCB design, layout and position of electronic parts through the simulation of heat flow analysis and PCB design was analyzed and decided at each design stage. Then, the experimental test is performed to verify the consistency of the analysis results under actual environmental conditions. In this paper, The PCB modeling and heat flow simulation in transient response were performed using HyperLynx Thermal and FloTHERM. In addition, the measurement was performed using infrared thermal imaging camera and used to verify the analysis results. In the final comparison, the error between analysis and experiment was found to be less than 10 % and the heating performance of PCB was also improved.

키워드

SHGSCZ_2019_v20n7_310_f0001.png 이미지

Fig. 1. Block diagram of the wireless charger system

SHGSCZ_2019_v20n7_310_f0002.png 이미지

Fig. 2. Block diagram of the wireless charger system verification procedure

SHGSCZ_2019_v20n7_310_f0003.png 이미지

Fig. 3. Configuration of the PCB Circuit

SHGSCZ_2019_v20n7_310_f0004.png 이미지

Fig. 4. Configuration of the PCB model

SHGSCZ_2019_v20n7_310_f0005.png 이미지

Fig. 5. Configuration of the heat point PCB(HyperLynx)

SHGSCZ_2019_v20n7_310_f0006.png 이미지

Fig. 6. Configuration of the heat point PCB(FloTHERM)

SHGSCZ_2019_v20n7_310_f0007.png 이미지

Fig. 7. Configuration modeling for wireless Power charger system using FloTHERM

SHGSCZ_2019_v20n7_310_f0008.png 이미지

Fig. 8. Results of upper PCB thermal simulations using the HyperLynx Thermal

SHGSCZ_2019_v20n7_310_f0009.png 이미지

Fig. 9. Results of lower PCB thermal simulations using the HyperLynx Thermal

SHGSCZ_2019_v20n7_310_f0010.png 이미지

Fig. 10. Results of Upper and Lower PCB thermal Simulations using the FloTHERM

SHGSCZ_2019_v20n7_310_f0011.png 이미지

Fig. 11. Results of Wireless Charger system

SHGSCZ_2019_v20n7_310_f0012.png 이미지

Fig. 12. Result of transient thermal simulation until 120min

SHGSCZ_2019_v20n7_310_f0013.png 이미지

Fig. 13. Test setup to measure the temperature of the wireless charger device

SHGSCZ_2019_v20n7_310_f0014.png 이미지

Fig. 14. Comparison of result obtained from IR thermography measurements

Table 1. Simulation modeling conditions

SHGSCZ_2019_v20n7_310_t0001.png 이미지

Table 2. Simulation and experiment conditions

SHGSCZ_2019_v20n7_310_t0002.png 이미지

Table 3. Temperature Comparison

SHGSCZ_2019_v20n7_310_t0003.png 이미지

참고문헌

  1. T. A. Asghari, "PCB Thermal via optimization using design of experiments," IEEE Tr. Thermal and thermomechanical proceedings 10th intersociety conference, pp.224-228, 2006. DOI: https://dx.doi.org/10.1109/ITHERM.2006.1645346
  2. Yi. Wang, S. W. H de Haan and J. A. Ferreira "Thermal design guideline of PCB traces under DC and AC Current," IEEE Tr. Energy conversion congress and exposition, pp.1240-1246, 2009. DOI: https://dx.doi.org/10.1109/ECCE.2009.5316250
  3. S. C. Jang, M. S. Kweon and S. M. Han, "Heat Characteristics Analysis of Radiator for PCB-Board," Journal of the Korean Society for Power System Engineering, Vol.20, No.6, pp.20-26, 2016. DOI: https://doi.org/10.9726/kspse.2016.20.6.020
  4. S. C. Kim, B "Thermal Design and Analysis Evaluation of ISG Motor for Hybrid Electric Vehicles Considering High-speed Driving Condition," Transactions of KASE, Vol. 22, NO.1, pp.59-64, 2014. DOI: https://doi.org/10.7467/KSAE.2014.22.1.059
  5. K. J. Park, D. W. Kim "A study of Temperature Predictions for Manual Transmission Clutch System Via Anti-fade and Hill Start Virtual Test," Transactions of KASE, Vol. 23, NO.1, pp.122-129, 2015. Available From: DOI: https://doi.org/10.7467/KSAE.2015.23.1.122
  6. T. Y. Tom Lee, J. "Application of a CFD Tool for System-Level Thermal Simulation," IEEE Tr. Packaging and Manufacturing Technology, Vol.17, No.4, pp.564-572, 1994. DOI: https://dx.doi.org/10.1109/95.335043