DOI QR코드

DOI QR Code

The study on structural vulnerability analysis of small fixed wing UAV with hard landing

동체 착륙 방식의 소형 고정익 무인항공기 구조 취약점 분석

  • Jeong, Seong-rok (The 2nd Team of Aeronautical Center, Defence Agency for Technology and Quality) ;
  • Kang, Ju-hwan (The 2nd Team of Aeronautical Center, Defence Agency for Technology and Quality)
  • 정성록 (국방기술품질원 항공센터 항공 2팀) ;
  • 강주환 (국방기술품질원 항공센터 항공 2팀)
  • Received : 2019.04.26
  • Accepted : 2019.07.05
  • Published : 2019.07.31

Abstract

In this paper, the structural weakness analysis and quality improvement of small fixed wing UAV of the hard landing type were studied. Unlike conventional aircraft, small UAV does not use runways because of its small size. Instead, small UAV use hand launch takeoff and hard landings. This type has many operational advantages because it can take off and land in a narrow space. But, the hard landing has a strong impact on the structure of the UAV and can cause serious damage. In order to analyze the exact cause of this phenomenon, the structural analysis was carried out using the 3D structural analysis program (ABAQUS) to identify the location of the fracture. And to improve the accuracy of the structural analysis, properties of the material were obtained through specimen test. As a result of the analysis, structural weaknesses were identified and improved. Thus, the validity of the study was verified by demonstrating the quality of enhanced structure through a real impact test at a higher level of 1.5 times the maximum impact during operation.

본 연구에서는 동체착륙 방식의 소형 고정익 무인항공기의 구조적 취약점 분석 및 품질 개선에 대한 연구를 실시하였다. 소형 고정익 무인항공기는 일반 비행체와는 달리 활주로를 사용하지 않는 투척이륙과 동체착륙 방식을 많이 사용한다. 이러한 방식은 좁은 공간에서 이륙, 착륙이 가능하여 운용적으로 많은 장점이 있다. 하지만, 동체착륙은 비행체 구조에 강한 충격이 발생하여 작은 설계 오류로 심각한 파손을 발생시킬 수 있다. 본 연구 대상인 비행체 또한 착륙과정에서 특정 부위에 지속적인 파손이 발생하였다. 이러한 현상의 정확한 원인분석을 위해 파손이 발생한 부위를 3D 구조 해석프로그램(ABAQUS)을 활용하여 구조 해석을 실시하여 정확한 위치를 파악하였고 구조해석에 정확성을 높이기 위해 시편 시험을 통해 재료의 물성치 정보를 획득하였다. 해석 결과 구조적 취약점을 확인하여 개선을 진행하였고 품질이 향상된 구조물을 운용 중 최대 충격량의 1.5배의 더 높은 수준의 실제 충격시험을 통해 검증함으로써 연구의 타당성을 입증하였다.

Keywords

SHGSCZ_2019_v20n7_20_f0001.png 이미지

Fig. 1. Analysis process

SHGSCZ_2019_v20n7_20_f0002.png 이미지

Fig. 2. Small UAV composition

SHGSCZ_2019_v20n7_20_f0003.png 이미지

Fig. 3. Tail boom

SHGSCZ_2019_v20n7_20_f0004.png 이미지

Fig. 4. Z-direction acceleration data

SHGSCZ_2019_v20n7_20_f0005.png 이미지

Fig. 5. Tail boom

SHGSCZ_2019_v20n7_20_f0006.png 이미지

Fig. 7. Quality vulnerability

SHGSCZ_2019_v20n7_20_f0007.png 이미지

Fig. 6. Tail boom analysis result

SHGSCZ_2019_v20n7_20_f0008.png 이미지

Fig. 8. Tail boom fix nail

SHGSCZ_2019_v20n7_20_f0009.png 이미지

Fig. 9. Complement design

SHGSCZ_2019_v20n7_20_f0010.png 이미지

Fig. 10. Z-direction shock test

SHGSCZ_2019_v20n7_20_f0011.png 이미지

Fig. 11. shock profile (20 g, 11 ms)

SHGSCZ_2019_v20n7_20_f0012.png 이미지

Fig. 12. shock profile (20 g, 18 ms)

SHGSCZ_2019_v20n7_20_f0013.png 이미지

Fig. 13. specimen after shock test

Table 1. Small UAV specification

SHGSCZ_2019_v20n7_20_t0001.png 이미지

Table 2. Tail boom material

SHGSCZ_2019_v20n7_20_t0002.png 이미지

Table 3. Tensile test average

SHGSCZ_2019_v20n7_20_t0003.png 이미지

Table 4. Analysis data

SHGSCZ_2019_v20n7_20_t0004.png 이미지

Table 5. 3D Structural analysis result

SHGSCZ_2019_v20n7_20_t0005.png 이미지

Table 6. Comparison of analysis results

SHGSCZ_2019_v20n7_20_t0006.png 이미지

Table 7. Complement design

SHGSCZ_2019_v20n7_20_t0007.png 이미지

References

  1. Korean agency for technology and standards, Technical Report, KS W 9000, Korea, pp.1-8 Available From : http://www.ks.or.kr
  2. Jong-Woo Kim, Seok-Wun Ha, Yong-Ho Moon, "A Study on Automatic Precision Landing for Small UAV's Industrial Application", The Society of Convergence for Small and Medium Business , Vol 7, No. 3, pp. 27-36, 2017 DOI: https://doi.org/10.22156/CS4SMB.2017.7.3.027
  3. Muhyoung Lee, Illkyung Park, Sungjoon Kim, Sukmin Ahn, "Study on Evaluation of Structural Integrity for Small Aircraft Tail", Journal of Aerospace system engineering , Vol. 6, No. 2 pp. 28-34, 2012 DOI: http://dx.doi.org/10.20910/JASE.2012.6.2.028
  4. G.K. Ananda, P.P. Sukumar, M.S. Selig, "Measured aerodynamic characteristics of wings at low Reynolds numbers", Aerospace Science and Technology Vol. 42, pp. 392-406, 2015 DOI: https://doi.org/10.1016/j.ast.2014.11.016
  5. Janghyen Jo, Byungjun Hwang, "The study on designing and making small unmanned aerial vehicle robot", Journal of Korean Society of mechanical technology Vol. 12 No. 3, pp. 109-115, 2010 DOI: https://doi.org/10.17958/ksmt.12.3.201009.109
  6. Hyun-gi Kim, Sung Joon Kim, Sung Chan Kim, Jeong-Woo Shin, Seunggyu Lee,Sang-Wook Park, Tae-Uk Ki, "Structural Analysis of Fuselage and Empennage of High Altitude Long Endurance UAV", Journal of the Korean Society for Aviation and Aeronautics , Vol. 24, No. 4, pp. 35-43, 2016 DOI: http://dx.doi.org/10.12985/ksaa.2016.24.4.035
  7. Sung-Joon Kim, Seung-gyu Lee, Tae-Uk Kim, "Structural safety factor for small unmanned aircraft", Journal of the Korean Society for Aviation and Aeronautics , Vol. 25, No. 2, pp. 12-17, 2017 DOI: http://dx.doi.org/10.12985/ksaa.2017.25.2.012
  8. Dong min Kim, Myung kyu Hur, "Manufacturing of All Composite Unmanned Aerial Vehicle", Journal of the Korean Society for Composite Materials, Vol. 15, No. 6, pp. 24-29, 2002 Available From : http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO200211921474739