DOI QR코드

DOI QR Code

Fabrication and Characterization of a Flexible PVDF Fiber-based Polymer Composite for High-performance Energy Harvesting Devices

  • Nguyen, Duc-Nam (Department of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Moon, Wonkyu (Department of Mechanical Engineering, Pohang University of Science and Technology)
  • 투고 : 2019.07.02
  • 심사 : 2019.07.12
  • 발행 : 2019.07.31

초록

A flexible polyvinylidene fluoride (PVDF)/polydimethylsiloxane (PDMS) composite prototype with high piezoelectricity and force sensitivity was constructed, and its huge potential for applications such as biomechanical energy harvesting, self-powered health monitoring system, and pressure sensors was proved. The crystallization, piezoelectric, and electrical properties of the composites were characterized using an X-ray diffraction (XRD) experiment and customized experimental setups. The composite can sustain up to 100% strain, which is a huge improvement over monolithic PVDF fibers and other PVDF-based composites in the literature. The Young's modulus is 1.64 MPa, which is closely matched with the flexibility of the human skin, and shows the possibility for integrating PVDF/PDMS composites into wearable devices and implantable medical devices. The $300{\mu}m$ thick composite has a 14% volume fraction of PVDF fibers and produces high piezoelectricity with piezoelectric charge constants $d_{31}=19pC/N$ and $d_{33}=34pC/N$, and piezoelectric voltage constants $g_{31}=33.9mV/N$ and $g_{33}=61.2mV/N$. Under a 10 Hz actuation, the output voltage was measured at 190 mVpp, which is the largest output signal generated from a PVDF fiber-based prototype.

키워드

HSSHBT_2019_v28n4_205_f0001.png 이미지

Fig. 1. Fabrication procedure for uniaxial PVDF fiber/PDMS compsite

HSSHBT_2019_v28n4_205_f0002.png 이미지

Fig. 2. Simulation of electric potential distribution on the EpCA ES setup

HSSHBT_2019_v28n4_205_f0003.png 이미지

Fig. 3. SEM of electrospun PVDF fibers.

HSSHBT_2019_v28n4_205_f0004.png 이미지

Fig. 4. The measurement system of (a) d31 value and (b) d33 value

HSSHBT_2019_v28n4_205_f0005.png 이미지

Fig. 5. The relative impact of different parameters in the case of targeting to (a) (b) (c) fiber diameter and (d) fiber alignment level.

HSSHBT_2019_v28n4_205_f0006.png 이미지

Fig. 6. The SEM micrograph of PVDF fibers fabricated under optimum conditions

HSSHBT_2019_v28n4_205_f0007.png 이미지

Fig. 7. Stress-strain curve of the three PVDF/PDMS composite samples

HSSHBT_2019_v28n4_205_f0008.png 이미지

Fig. 8. X-ray diffraction spectrum of PVDF fibers. The spectrum reveals a high percentage of β-phase at a peak of 20.8°.

HSSHBT_2019_v28n4_205_f0009.png 이미지

Fig. 9. The measurement data of piezoelectric charge and piezoelectric voltage constant

HSSHBT_2019_v28n4_205_f0010.png 이미지

Fig. 10. Voltages generated under the same pressure in the axial loading direction at different frequencies: 10 Hz, 20 Hz, 40 Hz, and 60 Hz.

Table 1. Implementation procedure for applying Taguchi’s method

HSSHBT_2019_v28n4_205_t0001.png 이미지

Table 2. Design of Experiment and results for the fiber diameter

HSSHBT_2019_v28n4_205_t0002.png 이미지

Table 3. Design of Experiment and results as the Quality character is fiber alignment

HSSHBT_2019_v28n4_205_t0003.png 이미지

Table 4. Summary of reports on PVDF-based composite and PVDF monolithic fibers. NFES: Near-field Electrospinning, FFES: Far-field Electrospinning, CNT: Carbon Nanotube, N/A: Not available

HSSHBT_2019_v28n4_205_t0004.png 이미지

참고문헌

  1. A. B. Amar, A. B. Kouki, Hung Cao, "Power Approaches for Implantable Medical Devices", Sensors, Vol. 15, No. 11, pp. 28889-914, 2015. https://doi.org/10.3390/s151128889
  2. Y. Liu, H. Wang, W. Zhao, M. Zhang, H. Qin, and Y. Xie, "Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features", Sensors, Vol. 18, No. 2, pp. 645(1)-645(35), 2018. https://doi.org/10.3390/s18020645
  3. C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency", Nano Lett., Vol. 10, No. 2, pp. 726-731, 2010. https://doi.org/10.1021/nl9040719
  4. T. Lei, L. Yu, G. Zheng, L Wang, D. Wu, and D. Sun, "Electrospinning-induced preferred dipole orientation in PVDF fibers", J. Mat. Sci., Vol. 50, No. 12, pp. 4342-4347, 2015. https://doi.org/10.1007/s10853-015-8986-0
  5. J. Hu, Y. Zhu, H. Zhang, Y. Gu, and X. Yang, "Mixed effect of main electrospinning parameters on the ${\beta}$-phase crystallinity of electrospun PVDF nanofibers", Smart Mater. Struct., Vol. 26, No. 8, pp. 085019(1)-085019(9), 2017. https://doi.org/10.1088/1361-665x/aa7245
  6. Y. Ding, Y. Duan, and Y. An Huang, "Electrohydrodynamically Printer, Flexible Energy Harvester Using In Situ Poled Piezoelectric Nanofibers", Energy Technol., Vol. 3, No. 3, pp. 351-358, 2015. https://doi.org/10.1002/ente.201402148
  7. P. Martin, A.C. Lopes, and S. Lanceros-Mendez, "Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications", Prog. Polym. Sci., Vol. 39, No. 4, pp. 683-706, 2014. https://doi.org/10.1016/j.progpolymsci.2013.07.006
  8. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, "Properties and Applications of the ${\beta}$ Phase Poly(vinylidene fluoride)", Polymers, Vol. 10, No. 3, pp. 228(1)-228(27), 2018. https://doi.org/10.3390/polym10030228
  9. L. S. Carnell, E. J. Siochi, R. A. Wincheski, N. M. Holloway, and R. L. Clark, "Electric field effects on fiber alignment using an auxiliary electrode during electrospinning", Scr. Mater., Vol. 60, No. 6, pp. 359-361, 2009. https://doi.org/10.1016/j.scriptamat.2008.09.035
  10. M. M. L. Arras, C. Grasl, H. Bergmeister, and H. Schima, "Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes", Sci. Technol. Adv. Mater., Vol. 13, No. 3, pp. 035008(1)-035008(8), 2012. https://doi.org/10.1088/1468-6996/13/3/035008
  11. Y. Ishii, H. Sakai, and H. Murata, "A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers", Mater. Lett., Vol. 62, No. 19, pp. 3370-3372, 2008. https://doi.org/10.1016/j.matlet.2008.03.038
  12. F. Dabirian, S. A. H. Ravandi, A. R. Pishevar and R. A. Abuzade, "A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems". J. Electrostat., Vol. 69, No.6, pp. 540-546, 2011. https://doi.org/10.1016/j.elstat.2011.07.006
  13. G. Zheng, W. Li, X. Wang, D. Wu, D. Sun, and L. Lin, "Precision deposition of a nanofibre by near-field electrospinning". J. Phys. D, Vol. 43, No. 41, pp. 415501(1)-415501(6), 2010. https://doi.org/10.1088/0022-3727/43/41/415501
  14. J. Lee, S. Y. Lee, J. Jang, Y. H. Jeong, and D. W. Cho, "Fabrication of patterned nanofibrous mats using direct-write electrospinning", Langmuir, Vol. 28, No.18, pp. 7267-7275, 2012. https://doi.org/10.1021/la3009249
  15. P. Kiselev and J. Rosell-Llompart, "Highly aligned electrospun nanofibers by elimination of the whipping motion", J. Appl. Polym. Sci., Vol. 125, No. 3, pp. 2433-2441, 2012. https://doi.org/10.1002/app.36519
  16. D. Sun, C. Chang, S. Li, and L. Lin, "Near-Field Electrospinning", Nano Lett., Vol. 6, No. 4, pp.839-842, 2006. https://doi.org/10.1021/nl0602701
  17. D.-N Nguyen, Y. Hwang, and W. Moon, "Electrospinning of well-aligned fiber bundles using an End-point Control Assembly method", Eur. Polym. J., Vol.77, pp. 54-64, 2016. https://doi.org/10.1016/j.eurpolymj.2016.02.017
  18. D.-N Nguyen, S. M. Yu, and W. Moon, "Electrospinning of poly(${\gamma}$-benzyl-${\alpha}$,L-glutamate) microfibers for piezoelectric polymer applications", J. Appl. Polym. Sci., Vol. 135, No. 27, p. 46440, 2018. https://doi.org/10.1002/app.46440
  19. A. Nazir, N. Khenoussi, L. Schacher, T. Hussain, and A. H. Hekmati, "Using the Taguchi method to investigate the effect of different parameters on mean diameter and variation in PA-6 nanofibres produced by needleless electrospinning", RSC Adv., Vol. 5, No. 94, pp. 76892-76897, 2015. https://doi.org/10.1039/C5RA13649K
  20. C. M. Wu, C. Hsu, C. Su, C. Liu, and J. Lee, "Optimizing parameters for continuous electrospinning of polyacrylonitrile nanofibrous yarn using the Taguchi method", J. Ind. Text., Vol. 48, No. 3, pp. 559-579, 2017. https://doi.org/10.1177/1528083717740741
  21. R. K. Roy, Design of experiments using the Taguchi approach, John Wiley & Sons, New Jersey, USA, 2001.
  22. S. J. Tuck, M. K. Leach, Z. Feng, and J. M. Corey, "Critical variables in the alignment of electrospun PLLA nanofibers", Mater. Sci. Eng. C, Vol. 32, No. 7, pp. 1779-1784, 2012. https://doi.org/10.1016/j.msec.2012.04.060
  23. D. Farrar, K. Ren, D. Cheng, S. Kim, W. Moon, W. Wilson, J. E. West, and S. M. Yu, "Permanent polarity and piezoelectricity of electrospun alpha-helical poly(alpha-amino acid) fibers", Adv Mater., Vol. 23, No. 34. pp. 3954-3968, 2011. https://doi.org/10.1002/adma.201101733
  24. S. Debarun, K. Prakash, S. H. Chen, J. M. Miao, C. Y. Kwok, M. S. Triantafyllou, M. E. Warkiani, and M. Asadnia, "Characterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing applications", AIP Adv., Vol. 7, No. 10, pp. 105205(1)-105205(7), 2017.
  25. M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, "Thicknessdependent mechanical properties of polydimethylsiloxane membranes", J. Micromech. Microeng., Vol. 19, No. 3, pp. 035028(1)-035028(4), 2009. https://doi.org/10.1088/0960-1317/19/3/035028
  26. Y. Xin, X. Qi, H. Tian, C. Guo, X. Li, J. Lin, and C. Wang, "Full-fiber piezoelectric sensor by straight PVDF/nanoclay nanofibers", Mater. Lett., Vol. 164, pp. 136-139, 2016. https://doi.org/10.1016/j.matlet.2015.09.117
  27. N. Shehata, E. Elnabawy, M. Abdelkader, A. H. Hassain, M. Salah, R. Nair, and S. A. Bhat, "Static-Aligned Piezoelectric Poly (Vinylidene Fluoride) Electrospun Nanofibers/ MWCNT Composite Membrane: Facile Method", Polymers, Vol. 10, No.9, pp. 965(1)-965(11), 2018. https://doi.org/10.3390/polym10090965
  28. A. Chinnappan, J. K. Y. Lee, W. A. D. M. Jayathilaka, and S. Ramakrishna, "Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method", Int. J. Hydrog. Energy, Vol. 43, No. 2, pp. 721-729, 2018. https://doi.org/10.1016/j.ijhydene.2017.11.028
  29. J. Nunes-Pereira, V. Sencadas, V. Correia, J. G. Rocha, and S. L. Mendez, "Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites", Sens. Actuator A-Phys., Vol. 196, pp. 55-62, 2013. https://doi.org/10.1016/j.sna.2013.03.023
  30. J. Pu, X. Yan, Y. Jiang, C. Chang, and L. Lin, "Piezoelectric actuation of direct-write electrospun fibers", Sens. Actuator A-Phys., Vol. 164, No. 2, pp. 131-136, 2010. https://doi.org/10.1016/j.sna.2010.09.019
  31. Z. Liu, C. Pan, Z. Ou, and W. Wang, "Piezoelectricity of Well-Aligned Electrospun Fiber Composites", IEEE Sens. J., Vol. 13, No. 10, pp. 4098-4103, 2013. https://doi.org/10.1109/JSEN.2013.2278739
  32. H. Y. Son, J. S. Park, J. Huang, J. Kim, Y. S. Nam, and W. S. Kim, "Flexible Fibrous Piezoelectric Sensors on Printed Silver Electrodes", IEEE Trans. Nanotechnol., Vol. 13, No. 4, pp. 709-713, 2014. https://doi.org/10.1109/TNANO.2014.2316536
  33. C. T. Pan, K. C. Tsai, S. Y. Wang, C. K. Yen, and Y. L. Lin, "Large-Area Piezoelectric PVDF Fibers Fabricated by Near-Field Electrospinning with Multi-Spinneret Structures", Micromachines, Vol. 8, No. 4, pp. 97(1)-97(16), 2017. https://doi.org/10.3390/mi8040097
  34. C. M. Wu, M. H. Chou, and W. Y. Zeng, "Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/ Carbon Nanotube Nanofibrous Membranes", Nanomaterials, Vol. 8, No. 6, pp. 420(1)-420(), 2018. https://doi.org/10.3390/nano8060420
  35. G. Ren, F. Cai. B. Li, J. Zheng, and C. Xu, "Flexible Pressure Sensor Based on a Poly(VDF-TrFE) Nanofiber Web", Macromol. Mater. Eng., Vol. 298, No. 5, pp. 541-546, 2013. https://doi.org/10.1002/mame.201200218
  36. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, and J. A. Rogers, "High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)", Nat Commun., Vol. 4, pp. 1633(1)-1633(10), 2013. https://doi.org/10.1038/ncomms2639