DOI QR코드

DOI QR Code

2차원 유효응력 해석에 의한 지진시 포항 안벽구조물의 변형 사례 분석

A Case Study on Earthquake-induced Deformation of Quay Wall and Backfill in Pohang by 2D-Effective Stress Analysis

  • 투고 : 2019.03.22
  • 심사 : 2019.06.01
  • 발행 : 2019.07.31

초록

본 연구는 2017년 11월 15일에 발생한 규모 5.4의 포항지진을 대상으로 영일만항 안벽 및 배면에서 발생한 피해의 메커니즘을 규명하는 것이 목적이다. 현장조사 등에 의해 영일만항은 케이슨이 5cm~15cm 정도의 수평변위가 발생하였고, 뒤채움 지반에서는 10cm 이상의 침하가 발생하였다. 이에 대한 원인을 규명하기 위해 2차원 유효응력해석을 수행하였다. 입력 지진하중은 포항구항의 기반암에서 계측된 지진가속도($3.25m/s^2$)를 이용하였다. 수치해석 결과 배후지의 뒤채움 지반내 국부적으로 과잉간극수압이 증가하여 유효응력이 감소한 것으로 밝혀졌다. 이로 인해 케이슨의 경우 수평방향으로 약 14cm의 변위가 발생하였고, 3cm 정도 침하하였다. 뒤채움 지반의 경우 6cm~9cm 정도 침하한 것으로 나타났다. 이는 현장조사와도 유사한 결과임이 밝혀졌다. 또한, 뒤채움 지반내 유효응력 경로 및 응력-변형률 거동으로부터 반복적 하중에 의해 지반이 Mohr-Coulomb의 파괴선에 근접하는 것으로 나타났고, 이는 과잉간극수압의 증가에 따른 유효응력의 소실에 의한 지지력의 감소로 판단된다.

The purpose of this study is to investigate the mechanism about damages occurring at quay wall and backfill in Youngilman Port during Pohang earthquake (M5.4) on November 15, 2017. In the field investigation, the horizontal displacement of the caisson occurred between 5 cm and 15 cm, and the settlement at backfill occurred higher than 10 cm. 2D-effective Stress Analysis was performed to clarify the mechanism for the damage. The input earthquake motion used acceleration ($3.25m/s^2$) measured at bedrock of Pohang habor. Based on a numerical analysis, it was found that the effective stress decreased due to the increase of excess pore pressure in the backfill ground and the horizontal displacement of the caisson occurred by about 14 cm, and the settlement occurred by about 3 cm. In backfill, the settlements occurred between 6 cm and 9 cm. This is similar to field investigation results. Also, it was found that the backfill soil was close to the Mohr-Coulomb failure line due to the cyclic loading from the effective stress path and the stress-strain behavior. It may be related to decreasing of bearing capacity induced by the reduction of effective stress caused by the increase of the excess pore water pressure.

키워드

GJBGC4_2019_v35n7_15_f0001.png 이미지

Fig. 1. Damage of coastal structure by liquefaction (Sugano et al., 2014)

GJBGC4_2019_v35n7_15_f0002.png 이미지

Fig. 2. Youngilman Port

GJBGC4_2019_v35n7_15_f0003.png 이미지

Fig. 3. Damages to Youngilman habor during earthquake

GJBGC4_2019_v35n7_15_f0004.png 이미지

Fig. 4. Representive cross-sectional plan

GJBGC4_2019_v35n7_15_f0005.png 이미지

Fig. 5. Acceleration station during Pohang earthquake

GJBGC4_2019_v35n7_15_f0006.png 이미지

Fig. 6. Acceleration of Pohang Earthquake measurement

GJBGC4_2019_v35n7_15_f0007.png 이미지

Fig. 7. Schematic diagram for multiple simple shear mechanism model (Iai, 1992a)

GJBGC4_2019_v35n7_15_f0008.png 이미지

Fig. 8. Schematic diagram for liquefaction front, state variable (S) and shear stress ratio (Iai et al., 1992a, 1992b)

GJBGC4_2019_v35n7_15_f0009.png 이미지

Fig. 9. Mesh for dynamic analysis

GJBGC4_2019_v35n7_15_f0010.png 이미지

Fig. 10. grain-size distribution curve at Youngilman (Mun, 2018)

GJBGC4_2019_v35n7_15_f0011.png 이미지

Fig. 11. Responded Accelerations

GJBGC4_2019_v35n7_15_f0012.png 이미지

Fig. 12. Distribution of excess pore water pressure ratio

GJBGC4_2019_v35n7_15_f0013.png 이미지

Fig. 13. Excess pore water pressure ratio

GJBGC4_2019_v35n7_15_f0014.png 이미지

Fig. 14. Displacement of caisson and backfill ground

GJBGC4_2019_v35n7_15_f0015.png 이미지

Fig. 15. Shear stress-strain at E1

GJBGC4_2019_v35n7_15_f0016.png 이미지

Fig. 16. Shear stress-strain at E4

Table 1. Soil parameters for the 2-D effective stress analysis

GJBGC4_2019_v35n7_15_t0001.png 이미지

Table 2. Parameters of the excess pore water pressure generation model

GJBGC4_2019_v35n7_15_t0002.png 이미지

참고문헌

  1. Shin, W.K. (2003), "Estimation of Dynamic Lateral Displacement of Caisson Quay Walls with Effective Stress Analyses for Moderate Earthquake Loading", Master Thesis, Yeonsei University.
  2. Ahn, J.K., Baek, W.H., Choi, J.S., and Kwak, D.Y. (2018), "Investigation of Pohang Earthquake Liquefaction Using 1D Effective-Stress Site Response Analysis", Journal of the Korean Geotechnical Society, Vol.34, No.8, pp.37-49. https://doi.org/10.7843/KGS.2018.34.8.37
  3. Casagrande, A. (1936), "Characteristics of Cohesionless Soil Affecting the Stability of Slopes and Earth Fills", J. Boston Society of Civil Engineering, reprinted in contribution to soil mechanics 1925-1940, pp.257-276.
  4. Elgamal, A., Yang, Z., Parra, E., and Ragheb, A. (2003), "Modeling of Cyclic Mobility in Saturated Cohesionless Soils", International Journal of Plasticity, Vol.19, No.6, pp.883-905. https://doi.org/10.1016/S0749-6419(02)00010-4
  5. Iai, S., Matsunaga, Y., and Kameoka, T. (1992a), "Strain Space Plasticity Model for Cyclic Mobility", Soils and Foundations, Vol.32, No.2, pp.1-15. https://doi.org/10.3208/sandf1972.32.2_1
  6. Iai, S., Matsunaga, Y., and Kameoka, T. (1992b), "Analysis of Undrained Cyclic behavior of Sand under Anisotropic Consolidation", Soils and Foundations, Vol.32, No.2, pp.16-20. https://doi.org/10.3208/sandf1972.32.2_16
  7. Iai, S. (2000), Seismic Design Guidelines for Port Structures, A.A. Balkema Publishers.
  8. Ishihara, K. and Towhata, I. (1980), "One-dimensional Soil Response Analysis during Earthquakes based on Effective Stress Analysis", Journal of the faculty of engineering, The University of Tokyo (B), Vol.XXXV, No.4, pp.655-700.
  9. Kang, G.-C., Yun, S.-K., Kim, T.-H., and Kim, D.-S. (2013), "Numerical Analysis on Settlement Behavior of Seabed Sand-Coastal Structure Subjected to Wave Loads", Journal of Korean Society of Coastal and Ocean Engineers, Vol.25, No.1, pp.20-27. https://doi.org/10.9765/KSCOE.2013.25.1.20
  10. Kang, G.-C., Tobita, T., and Iai, S. (2014), "Seismic Simulation of Liquefaction-induced Uplift behavior of Ahollow Cylinder Structure Buried in Shallow Ground", Soil Dynamics and Earthquake Engineering, Vol. 64, pp.85-94. https://doi.org/10.1016/j.soildyn.2014.05.006
  11. KDPA (2010), "Lessons from Indonesia's Repetitive Tsunami", Disaster Prevention Journal, Vol.12, No.4, pp.32-36.
  12. Lee, J.S. and Noh, G.D. (2016), "Evaluation of Caisson Quay Wall Behavior during the 1995 Kobe Earthquake by Nonlinear Effective Stress Analysis", Journal of Earthquake Engineering Society of Korea, Vol.20, No.6, pp.401-412. https://doi.org/10.5000/EESK.2016.20.6.401
  13. Lee, H. and Kim, E., (2011), "Damage Recovery in Japan after the East Japan Earthquake", World Econony Update, Vol.11, No.22, pp.1-14.
  14. Martin, G. R., Finn, W. D. L., and Seed, H. B. (1975), "Fundamentals of Liquefaction under Cyclic Loading", Journal of Geotechnical Engineering, ASCE, Vol.101, No.5, pp.423-438.
  15. Mun, G. Y. (2018), A Study on the Effect of Relative Density and Particle Size Distribution on the Liquefaction Resistance Strength of Sand in Pohang Liquefaction Region, Master thesis, Pusan National University.
  16. Morita, T., Iai, S., Liu, H., Ichii, K., and Sato, Y. (1997), "Simplified Method to Determine Parameter of FLIP", Technical Note of the Port and Harbor Research Institute, No.869, pp.1-36.
  17. Oka, F., Yashima, A., Tateishi, Y., Taguchi, Y., and Yamashita, S. (1999), "A Cyclic Elasto-plastic Constitutive Model for Sand Considering a Plastic-strain Dependence of the Shear Modulus", Geotechnique, Vol.49, No.5, pp.661-680. https://doi.org/10.1680/geot.1999.49.5.661
  18. Ozutsumi, O., Sawada, S., Iai, S., Takeshima, Y., Sugiyama, W., aned Shimasu, T. (2002), "Effective Stress Analyses of Liquefactioninduced Deformation in River Dikes", Journal of Soil Dynamics and Earthquake Engineering, Vol.22, pp.1075-1082. https://doi.org/10.1016/S0267-7261(02)00133-1
  19. Park, D. and Kwak, D.Y. (2009), "Evaluation of Liquefaction Potential with Simplified Method and Effective-Stress Site Response Analysis", Journal of the Korean Geotechnical Society, Vol.25, No.3, pp.75-82.
  20. Park, S.S. (2008), "Liquefaction Evaluation of Reclaimed Sites using and Effective Stress Analysis and an Equivalent Linear Analysis", Journal of Korea Society of Civil Engineering, Vol.28, No.2C, pp.83-94.
  21. Park, S.-S., Nong, Z., Choi, S.-G., and Moon, H.-D. (2018), "Resistance of Pohang Sand", Journal of the Korean Geotechnical Society, Vol.34, No.9, pp.5-17. https://doi.org/10.7843/kgs.2018.34.9.5
  22. Sawada, S., Ozutsumi, O., and Iai, S. (2000), "Analysis of Liquefaction Induced Residual Deformation for Two Types of Quay Walls: Analysis by FLIP", Proceedings of the 12th World Conference on Earthquake Engineering (Auckland), No.2486.
  23. Seed, H.B. and Idriss, I.M. (1967), "Analysis of Soil Liquefaction :Niigata Earthquake", JSMFD, ASCE, Vol.93, No.SM3, pp.83-108.
  24. Seed, H.B. and Idriss, I.M. (1971), "Simplified Procedure for Evaluating Soil Liquefaction Potential", Journal of the Soil Mechanics and Foundations Division, 97, pp.1249-1273. https://doi.org/10.1061/JSFEAQ.0001662
  25. Seed, H.B., Lee, K.L., Idriss, I.M., and Makdisi, F.I. (1975), "The Slides in the San Fernando Dams during the Earthquake of February 9, 1971", Journal of the Geotechnical Engineering Division, 101, pp.651-688. https://doi.org/10.1061/AJGEB6.0000178
  26. Sugano, T., Nozu, A., Koham, E., Shimosako, K., and Kikuchi, Y. (2014), "Damage to coastal structures", Soils and Foundations, Vol.54, No.4, pp.883-901. https://doi.org/10.1016/j.sandf.2014.06.018
  27. Stark, T.D. and Olson, S.M. (1995), "Liquefaction Resistance Using CPT and Field Case Histories", J. of Geotech. Eng., Vol. 121, No.12, pp.856-869. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(856)
  28. Tokimatsu, K. and Yoshimi, Y. (1983), "Empirical Corrlation of Soil Liquefaction based on SPT N-value and Fines Content", Soils and Foundations, Vol.23, No.4, pp.56-74. https://doi.org/10.3208/sandf1972.23.4_56
  29. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G, Christian, J.T., Dobry, R., Finn, W.D.L., Harder Jr., L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S., Marcuson Ш, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., and Stokoe, K.H. (2001), "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.10, pp.817-833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
  30. Yasuda, S., Yoshida, N., Adachi, K., Kiku, H., and Gose, S. (1999). "A Simplified Analysis of Liquefaction-induced Residual Deformation", Proceedings of the 2nd International Conference on Earthquake Geotechnical Engineering, pp.555-560.
  31. Yi, J., Kwon, O., and Park, W. (2006), "Evaluation of Liquefaction potential for Soil Using Probabilistic Approaches", Korea Society of Civil Engineering, Vol.26, No.5C, pp.313-322.

피인용 문헌

  1. Assessment of Pohang Earthquake-Induced Liquefaction at Youngil-Man Port Using the UBCSAND2 Model vol.10, pp.16, 2019, https://doi.org/10.3390/app10165424