DOI QR코드

DOI QR Code

128 채널 뇌파를 이용한 사이버멀미 평가법 개발

Development of a Method of Cybersickness Evaluation with the Use of 128-Channel Electroencephalography

  • 한동욱 (과학기술연합대학원대학교 한국표준과학연구원 캠퍼스 의학물리학) ;
  • 이동현 (과학기술연합대학원대학교 한국표준과학연구원 캠퍼스 의학물리학) ;
  • 지경하 (충남대학교 의류학과) ;
  • 안봉영 (한국표준과학연구원 의료융합표준센터) ;
  • 임현균 (한국표준과학연구원 의료융합표준센터)
  • 투고 : 2019.06.20
  • 심사 : 2019.07.05
  • 발행 : 2019.09.30

초록

가상현실 기술이 발전하면서 다양한 영역에서 여러 목적으로 활용되고 있다. 하지만 사용자로부터 메스꺼움, 어지러움 등과 같은 멀미 증상에 대한 부작용도 함께 보고되고 있다. 이런 멀미 증상을 사이버멀미라고 말하며, 사용자에게 불편을 야기시켜 불쾌감과 스트레스와 같은 부정적 영향을 줄 수 있으며, 현재 사이버멀미의 발생 원인과 해결책에 관한 공식적인 표준이 없다. 본 연구에서는 이런 한계점을 극복하기 위해 정량적, 객관적 사이버멀미 평가법을 제안하였다. 10명의 20대 남성 대상으로 이동과 회전을 하는 가상현실을 경험하게 하면서 128채널의 뇌파를 측정하였다. 11개 영역에서 Delta와 Alpha 상대 파워를 계산하고, ROC curve를 통해 area under the ROC curve (AUC)가 가장 높은 값을 가지는 다중회귀모형을 도출하였다. 이렇게 도출한 다중회귀모형은 11개의 설명변수로 피험자가 응답한 사이버멀미의 정도와 비교하여 95.1 % (AUC = 0.951)의 정확성으로 사이버멀미를 구분하는 것이 가능함을 알 수 있었다. 이러한 결과를 정리하면 본 연구에서는 128 채널의 뇌파를 통해 멀미에 대한 객관적 반응을 확인하였으며, 뇌의 특정부위에서 반응이 있는 것으로 나타났다. 본 연구 결과와 분석법을 활용하면 추후 사이버멀미 관련 연구에 도움이 될 수 있을 것으로 기대된다.

With advancements in technology of virtual reality, it is used for various purposes in many fields such as medical care and healthcare, but as the same time there are also increasing reports of nausea, eye fatigue, dizziness, and headache from users. These symptoms of motion sickness are referred to as cybersickness, and various researches are under way to solve the cybersickness problem because it can cause inconvenience to the user and cause adverse effects such as discomfort or stress. However, there is no official standard for the causes and solutions of cybersickness at present. This is also related to the absence of tools to quantitatively measure the cybersickness. In order to overcome these limitations, this study proposed quantitative and objective cybersickness evaluation method. We measured 128-channel EEG waves from ten participants experiencing visually stimulated virtual reality. We calculated the relative power of delta and alpha in 11 regions (left, middle, right frontal, parietal, occipital and left, right temporal lobe). Multiple regression models were obtained in a stepwise manner with the motion sickness susceptibility questionnaire (MSSQ) scores indicating the susceptibility of the subject to the motion sickness. A multiple regression model with the highest under the area ROC curve (AUC) was derived. In the multiple regression model derived from this study, it was possible to distinguish cybersickness by accuracy of 95.1% with 11 explanatory variables (PD.MF, PD.LP, PD.MP, PD.RP, PD.MO, PA.LF, PA.MF, PA.RF, PA.LP, PA.RP, PA.MO). In summary, in this study, objective response to cybersickness was confirmed through 128 channels of EEG. The analysis results showed that there was a clearly distinguished reaction at a specific part of the brain. Using the results and analytical methods of this study, it is expected that it will be useful for the future studies related to the cybersickness.

키워드

참고문헌

  1. Aykent, B., Yang, Z., Merienne, F., & Kemeny, A. (2014). Simulation sickness comparison between a limited field of view virtual reality head mounted display (Oculus) and a medium range field of view static ecological driving simulator (Eco2). Paper presented at the Driving Simulation Conference Europe 2014 Proceedings.
  2. Benzeroual, K., & Allison, R. S. (2013). Cyber (motion) sickness in active stereoscopic 3D gaming. Paper presented at the 2013 International Conference on 3D Imaging. DOI: 10.1109/ic3d.2013.6732090
  3. Berntsen, K., Palacios, R. C., & Herranz, E. (2016). Virtual reality and its uses: a systematic literature review. Paper presented at the Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality. DOI: 10.1145/3012430.3012553
  4. Bhandari, J., MacNeilage, P., & Folmer, E. (2018). Teleportation without Spatial Disorientation Using Optical Flow Cues. Paper presented at the Proceedings of Graphics Interface.
  5. Bonato, F., Bubka, A., & Palmisano, S. (2009). Combined pitch and roll and cybersickness in a virtual environment. Aviation, Space, and Environmental Medicine, 80(11), 941-945. DOI: 10.3357/asem.2394.2009
  6. Bonato, F., Bubka, A., Palmisano, S., Phillip, D., Moreno, G., & Environments, V. (2008). Vection change exacerbates simulator sickness in virtual environments. PRESENCE: Teleoperators and Virtual Environments, 17(3), 283-292. DOI: 10.1162/pres.17.3.283
  7. Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. DOI: 10.1016/s0031-3203(96)00142-2
  8. Calbi, M., Siri, F., Heimann, K., Barratt, D., Gallese, V., Kolesnikov, A., & Umilta, M. A. (2019). How context influences the interpretation of facial expressions: a source localization high-density EEG study on the "Kuleshov effect". Scientific reports, 9(1), 2107. DOI: 10.1038/s41598-018-37786-y
  9. Chang, E., Seo, D., Kim, H. T., & Yoo, B. (2018). An Integrated Model of Cybersickness: Understanding User's Discomfort in Virtual Reality. Journal of KIISE, 45(3), 251-279. DOI: 10.5626/jok.2018.45.3.251
  10. Chardonnet, J.-R., Mirzaei, M. A., & Merienne, F. (2015). Visually induced motion sickness estimation and prediction in virtual reality using frequency components analysis of postural sway signal. Paper presented at the International Conference on Artificial Reality and Telexistence Eurographics Symposium on Virtual Environments.
  11. Chen, A. C., Dworkin, S. F., Haug, J., & Gehrig, J. (1989). Topographic brain measures of human pain and pain responsivity. Pain, 37(2), 129-141. DOI: 10.1016/0304-3959(89)90125-5
  12. Chen, D., So, R., Kwok, K., & Cheung, R. (2012). Visually induced motion sickness after watching scenes oscillating at different frequencies and amplitudes. Ergonomics & Human Factors. Blackpool, UK, 253-260. DOI: 10.1201/b11933-61
  13. Chen, S., Jia, Y., & Woltering, S. (2018). Neural differences of inhibitory control between adolescents with obesity and their peers. International Journal of Obesity, 42(10), 1753. DOI: 10.1038/s41366-018-0142-x
  14. Chen, W., Chen, J., & So, R. H. Y. (2011). Visually induced motion sickness: effects of translational visual motion along different axes. Contemporary Ergonomics and Human Factors, 281-287. DOI: 10.1201/b11337-47
  15. Chen, Y. C., Duann, J. R., Chuang, S. W., Lin, C. L., Ko, L. W., Jung, T.-P., & Lin, C.-T. (2010). Spatial and temporal EEG dynamics of motion sickness. NeuroImage, 49(3), 2862-2870. DOI: 10.1016/j.neuroimage.2009.10.005
  16. Cheron, G., Leroy, A., De Saedeleer, C., Bengoetxea, A., Lipshits, M., Cebolla, A., . . . McIntyre, J. (2006). Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction. Brain Research, 1121(1), 104-116. DOI: 10.1016/j.brainres.2006.08.098
  17. Clemes, S. A., & Howarth, P. A. (2005). The menstrual cycle and susceptibility to virtual simulation sickness. Journal of Biological Rhythms, 20(1), 71-82. DOI: 10.1177/0748730404272567
  18. Cobb, S. V., Nichols, S., Ramsey, A., & Wilson, J. R. (1999). Virtual reality-induced symptoms and effects (VRISE). Presence: Teleoperators & Virtual Environments, 8(2), 169-186. DOI: 10.1162/105474699566152
  19. Cornick, J. E., & Blascovich, J. (2014). Are Virtual Environments the New Frontier in Obesity Management? Social and Personality Psychology Compass, 8(11), 650-658. DOI: 10.1111/spc3.12141
  20. Davis, S., Nesbitt, K., & Nalivaiko, E. (2014). A systematic review of cybersickness. Paper presented at the Proceedings of the 2014 Conference on Interactive Entertainment. DOI: 10.1145/2677758.2677780
  21. Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34(4), 1443-1449. DOI: 10.1016/j.neuroimage.2006.11.004
  22. Dennison, M. S., Wisti, A. Z., & D'Zmura, M. (2016). Use of physiological signals to predict cybersickness. Displays, 44, 42-52. DOI: 10.1016/j.displa.2016.07.002
  23. Dou, W., Li, J., Sun, S., Yu, H., Lv, X., Yang, Y., . . . Li, M., & Pu, F. (2019). Comparison of Electroencephalogram (EEG) Power Spectra Between Non-Vection and Vection. Journal of Medical Imaging and Health Informatics, 9(1), 58-62. DOI: 10.1166/jmihi.2019.2540
  24. Duh, H. B.-L., Parker, D. E., & Furness, T. A. (2001). An "independent visual background" reduced balance disturbance envoked by visual scene motion: implication for alleviating simulator sickness. Paper presented at the Proceedings of the SIGCHI conference on human factors in computing systems. DOI: 10.1145/365024.365051
  25. Dzhebrailova, T. D. (2003). Spectral EEG characteristics in students with different anxiety profile during tests. Zhurnal vysshei nervnoi deiatelnosti imeni IP Pavlova, 53(4), 495-502. DOI: 10.1023/b:hump.0000049581.77570.9c
  26. Farmer, A. D., Ban, V. F., Coen, S. J., Sanger, G. J., Barker, G. J., Gresty, M. A., . . . Aziz, Q. (2015). Visually induced nausea causes characteristic changes in cerebral, autonomic and endocrine function in humans. The Journal of physiology, 593(5), 1183-1196. DOI: 10.1113/jphysiol.2014.284240
  27. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. DOI: 10.1016/j.patrec.2005.10.010
  28. Fernandes, A. S., & Feiner, S. K. (2016). Combating VR sickness through subtle dynamic field-of-view modification. Paper presented at the 2016 IEEE Symposium on 3D User Interfaces (3DUI). DOI: 10.1109/3dui.2016.7460053
  29. Ferrer-Garcia, M., Gutierrez-Maldonado, J., & Riva, G. (2013). Virtual reality based treatments in eating disorders and obesity: a review. Journal of Contemporary Psychotherapy, 43(4), 207-221. DOI: 10.1007/s10879-013-9240-1
  30. Gasser, T., Verleger, R., Bacher, P., & Sroka, L. (1988). Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalography and Clinical Neurophysiology, 69(2), 91-99. DOI: 10.1016/0013-4694(88)90204-0
  31. Gavgani, A. M., Hodgson, D. M., & Nalivaiko, E. J. (2017). Effects of visual flow direction on signs and symptoms of cybersickness. PLOS ONE, 12(8), e0182790. DOI: 10.1371/journal.pone.0182790
  32. Gavgani, A. M., Nesbitt, K. V., Blackmore, K. L., & Nalivaiko, E. (2017). Profiling subjective symptoms and autonomic changes associated with cybersickness. Autonomic Neuroscience, 203, 41-50. DOI: 10.1016/j.autneu.2016.12.004
  33. Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain research bulletin, 47(5), 507-516. DOI: 10.1016/s0361-9230(98)00091-4
  34. Golding, J. F. (2006). Predicting individual differences in motion sickness susceptibility by questionnaire. Personality and Individual differences, 41(2), 237-248. DOI: 10.1016/j.paid.2006.01.012
  35. Goldman, R. I., Stern, J. M., Engel Jr, J., & Cohen, M. S. (2002). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13(18), 2487. DOI:10.1097/01.wnr.0000047685.08940.d0
  36. Golikova, Z., & Strelets, V. (2003). Development of examination stress in subjects with various levels of cortical activation. Zhurnal vysshei nervnoi deiatelnosti imeni IP Pavlova, 53(6), 697-704.
  37. Greiner, M., Pfeiffer, D., & Smith, R. (2000). Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive veterinary medicine, 45(1-2), 23-41. DOI: 10.1016/s0167-5877(00)00115-x
  38. Harvey, C., & Howarth, P. A. (2007). The effect of display size on visually-induced motion sickness (VIMS) and skin temperature. Paper presented at the Proceedings of the 1st international symposium on visually induced motion sickness, fatigue, and photosensitive epileptic seizures, Hong Kong.
  39. Hollenstein, N., Rotsztejn, J., Troendle, M., Pedroni, A., Zhang, C., & Langer, N. (2018). ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading. Scientific data, 5, 180291. DOI: 10.1038/sdata.2018.291
  40. Homan, R. W., Herman, J., & Purdy, P. (1987). Cerebral location of international 10-20 system electrode placement. Electroencephalography and clinical neurophysiology, 66(4), 376-382. DOI: 10.1016/0013-4694(87)90206-9
  41. Kaiser, D. A. (2010). Cortical cartography. Biofeedback, 38(1), 9-12. DOI: 10.5298/1081-5937-38.1.9
  42. Keil, A., Stolarova, M., Heim, S., Gruber, T., & Muller, M. M. (2003). Temporal stability of high-frequency brain oscillations in the human EEG. Brain Topography, 16(2), 101-110. DOI: 10.1023/b:brat.0000006334.15919.2c
  43. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203-220. DOI: 10.1207/s15327108ijap0303_3
  44. Keshavarz, B., & Hecht, H. (2011). Axis rotation and visually induced motion sickness: the role of combined roll, pitch, and yaw motion. Aviation, space, and environmental medicine, 82(11), 1023-1029. DOI: 10.3357/asem.3078.2011
  45. Kim, H. K., Park, J., Choi, Y., & Choe, M. (2018). Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Applied ergonomics, 69, 66-73. DOI: 10.1016/j.apergo.2017.12.016
  46. Kim, Y. Y., Kim, E. N., Park, M. J., Park, K. S., Ko, H. D., & Kim, H. T. (2008). The application of biosignal feedback for reducing cybersickness from exposure to a virtual environment. Presence: Teleoperators and Virtual Environments, 17(1), 1-16. https://doi.org/10.1162/pres.17.1.1
  47. Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., & Kim, H. T. (2005). Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5), 616-625. DOI: 10.1111/j.1469-8986.2005.00349.x
  48. Klem, G. H., Lüders, H. O., Jasper, H., & Elger, C. (1999). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 52(3), 3-6.
  49. Koessler, L., Maillard, L., Benhadid, A., Vignal, J. P., Felblinger, J., Vespignani, H., & Braun, M. (2009). Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system. NeuroImage, 46(1), 64-72. DOI: 10.1016/j.neuroimage.2009.02.006
  50. Kolasinski, E. M. (1995). Simulator Sickness in Virtual Environments. (No. ARI-TR-1027). Army Research Institute for the Behavioral and Social Sciences. DOI:10.21236/ada295861
  51. Labounek, R., Janecek, D., Marecek, R., Lamos, M., Slavicek, T., Mikl, M., . . . Jan, J. (2016). Generalized EEG-fMRI spectral and spatiospectral heuristic models. Paper presented at the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). DOI: 10.1109/isbi.2016.7493379
  52. LaCount, L., Napadow, V., Kuo, B., Park, K., Kim, J., Brown, E. N., & Barbieri, R. (2009). Dynamic cardiovagal response to motion sickness: a point-process heart rate variability study. Paper presented at the 2009 36th Annual Computers in Cardiology Conference (CinC).
  53. Larson, E. B., Ramaiya, M., Zollman, F. S., Pacini, S., Hsu, N., Patton, J. L., & Dvorkin, A. Y. (2011). Tolerance of a virtual reality intervention for attention remediation in persons with severe TBI. Brain Injury, 25(3), 274-281. DOI: 10.3109/02699052.2010.551648
  54. Lin, C.-L., Jung, T.-P., Chuang, S.-W., Duann, J.-R., Lin, C.-T., & Chiu, T.-W. (2013). Self-adjustments may account for the contradictory correlations between HRV and motion-sickness severity. International Journal of Psychophysiology, 87(1), 70-80. DOI: 10.1016/j.ijpsycho.2012.11.003
  55. Liu, C.-L., & Uang, S.-T. (2012). A study of sickness induced within a 3D virtual store and combated with fuzzy control in the elderly. Paper presented at the 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. DOI:10.1109/fskd.2012.6234149
  56. Llorach, G., Evans, A., & Blat, J. (2014). Simulator sickness and presence using HMDs: comparing use of a game controller and a position estimation system. Paper presented at the Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology. DOI: 10.1145/2671015.2671120
  57. Lo, W., & So, R. H. (2001). Cybersickness in the presence of scene rotational movements along different axes. Applied ergonomics, 32(1), 1-14. DOI: 10.1016/s0003-6870(00)00059-4
  58. Lubeck, A. J., Bos, J. E., & Stins, J. F. (2015). Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway. Displays, 38, 55-61. DOI: 10.1016/j.displa.2015.03.001
  59. Luu, P., & Ferree, T. (2005). Determination of the HydroCel Geodesic Sensor Nets' average electrode positions and their 10-10 international equivalents. Inc, Technical Note.
  60. McCann, R. A., Armstrong, C. M., Skopp, N. A., Edwards-Stewart, A., Smolenski, D. J., June, J. D., . . . Reger, G. M. (2014). Virtual reality exposure therapy for the treatment of anxiety disorders: an evaluation of research quality. Journal of anxiety disorders, 28(6), 625-631. DOI: 10.1016/j.janxdis.2014.05.010
  61. McCauley, M. E., & Sharkey, T. J. (1992). Cybersickness: Perception of self-motion in virtual environments. Presence: Teleoperators & Virtual Environments, 1(3), 311-318. DOI: 10.1162/pres.1992.1.3.311
  62. McMenamin, B. W., Shackman, A. J., Maxwell, J. S., Bachhuber, D. R., Koppenhaver, A. M., Greischar, L. L., & Davidson, R. J. (2010). Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG. NeuroImage, 49(3), 2416-2432. DOI: 10.1016/j.neuroimage.2009.10.010
  63. Microsoft (2019). Headpose. Retrieved from https://docs.microsoft.com/ko-kr/azure/cognitive-services/face/images/headpose.1.jpg
  64. Min, B.-C., Chung, S.-C., Min, Y.-K., & Sakamoto, K. (2004). Psychophysiological evaluation of simulator sickness evoked by a graphic simulator. Applied ergonomics, 35(6), 549-556. DOI: 10.1016/j.apergo.2004.06.002
  65. Nalivaiko, E., Davis, S. L., Blackmore, K. L., Vakulin, A., & Nesbitt, K. V. (2015). Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiology & Behavior, 151, 583-590. DOI: 10.1016/j.autneu.2015.07.032
  66. Napadow, V., Sheehan, J. D., Kim, J., LaCount, L. T., Park, K., Kaptchuk, T. J., . . . Kuo, B. J. (2012). The brain circuitry underlying the temporal evolution of nausea in humans. Cerebral Cortex, 23(4), 806-813. DOI: 10.1093/cercor/bhs073
  67. Naqvi, S. A. A., Badruddin, N., Jatoi, M. A., Malik, A. S., Hazabbah, W., & Abdullah, B. (2015). EEG based time and frequency dynamics analysis of visually induced motion sickness (VIMS). Australasian physical & engineering sciences in medicine, 38(4), 721-729. DOI: 10.1007/s13246-015-0379-9
  68. Niemiec, A. J., & Lithgow, B. J. (2006). Alpha-band characteristics in EEG spectrum indicate reliability of frontal brain asymmetry measures in diagnosis of depression. Paper presented at the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. DOI: 10.1109/iembs.2005.1616251
  69. Nuwer, M. R. (2018). 10-10 electrode system for EEG recording. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 129(5), 1103-1103. DOI: 10.1016/j.clinph.2018.01.065
  70. Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., . . . Dan, I. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. NeuroImage, 21(1), 99-111. DOI: 10.1016/j.neuroimage.2003.08.026
  71. Palmisano, S., Mursic, R., & Kim, J. (2017). Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 46, 1-8. DOI: 10.1016/j.displa.2016.11.001
  72. Parsons, T. D., Rizzo, A. A., Rogers, S., & York, P. (2009). Virtual reality in paediatric rehabilitation: a review. Developmental neurorehabilitation, 12(4), 224-238. DOI: 10.1080/17518420902991719
  73. Rebenitsch, L., & Owen, C. (2016). Review on cybersickness in applications and visual displays. Virtual Reality, 20(2), 101-125. DOI: 10.1007/s10055-016-0285-9
  74. Riccelli, R., Passamonti, L., Toschi, N., Nigro, S., Chiarella, G., Petrolo, C., . . . Indovina, I. (2017). Altered insular and occipital responses to simulated vertical self-motion in patients with persistent postural-perceptual dizziness. Frontiers in Neurology, 8, 529. DOI: 10.3389/fneur.2017.00529
  75. Rosenkranz, K., & Lemieux, L. (2010). Present and future of simultaneous EEG-fMRI. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5-6), 309-316. DOI: 10.1007/s10334-009-0196-9
  76. Ruffle, J. K., Patel, A., Giampietro, V., Howard, M. A., Sanger, G. J., Andrews, P. L. R., . . . Farmer, A. D. (2019). Functional brain networks and neuroanatomy underpinning nausea severity can predict nausea susceptibility using machine learning. Journal of Physiology, 597(6), 1517-1529. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30629751. DOI: 10.1113/JP277474
  77. Sharples, S., Cobb, S., Moody, A., & Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Display, 29(2), 58-69. DOI: 10.1016/j.displa.2007.09.005
  78. Shigemasu, H., Morita, T., Matsuzaki, N., Sato, T., Harasawa, M., & Aizawa, K. (2006). Effects of physical display size and amplitude of oscillation on visually induced motion sickness. Paper presented at the Proceedings of the ACM symposium on Virtual reality software and technology. DOI: 10.1145/1180495.1180571
  79. So, R. H., & Lo, W. (1998). Cybersickness with virtual reality training applications: a claustrophobia phenomenon with head-mounted displays. Paper presented at the Proceeding of the 1st world congress on ergonomics for global quality and productivity, Hong Kong.
  80. So, R. H., & Lo, W. (1999). Cybersickness: an experimental study to isolate the effects of rotational scene oscillations. Paper presented at the Proceedings IEEE Virtual Reality (Cat. No. 99CB36316). DOI: 10.1109/vr.1999.756957
  81. So, R. H., Ho, A., & Lo, W. (2001). A metric to quantify virtual scene movement for the study of cybersickness: Definition, implementation, and verification. Presence: Teleoperators & Virtual Environments, 10(2), 193-215. DOI: 10.1162/105474601750216803
  82. So, R. H., Lo, W., & Ho, A. T. (2001). Effects of navigation speed on motion sickness caused by an immersive virtual environment. Human factors, 43(3), 452-461. DOI: 10.1518/001872001775898223
  83. Soininen, H., Partanen, J., Paakkonen, A., Koivisto, E., & Riekkinen, P. (1991). Changes in absolute power values of EEG spectra in the follow‐up of Alzheimer's disease. Acta Neurologica Scandinavica, 83(2), 133-136. https://doi.org/10.1111/j.1600-0404.1991.tb04662.x
  84. Song, S. W. (2009). Using the Receiver Operating Characteristic (ROC) Curve to Measure Sensitivity and Specificity. Korean Journal of Family Medicine, 30(11). DOI: 10.4082/kjfm.2009.30.11.841
  85. Staudigl, T., Leszczynski, M., Jacobs, J., Sheth, S. A., Schroeder, C. E., Jensen, O., & Doeller, C. F. (2018). Hexadirectional Modulation of High-Frequency Electrophysiological Activity in the Human Anterior Medial Temporal Lobe Maps Visual Space. Current Biology, 28(20), 3325-3329. e3324. DOI: 10.1016/j.cub.2018.09.035
  86. Steinicke, F., Bruder, G., & Kuhl, S. J. A. T. o. G. (2011). Realistic perspective projections for virtual objects and environments. ACM Transactions on Graphics, 30(5), 112. DOI: 10.1145/2019627.2019631
  87. Teplan, M. (2002). Fundamentals of EEG measurement. Measurement Science Review, 2(2), 1-11.
  88. Toschi, N., Kim, J., Sclocco, R., Duggento, A., Barbieri, R., Kuo, B., & Napadow, V. (2017). Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions. Autonomic Neuroscience, 202, 108-113. DOI: 10.1016/j.autneu.2016.10.003
  89. Weech, S., Kenny, S., & Barnett-Cowan, M. (2019). Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Front Psychol, 10, 158. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30778320.DOI: 10.3389/fpsyg.2019.00158
  90. Wiederhold, B. K. (2006). The potential for virtual reality to improve health care. The Virtual Reality Medical Center.
  91. Wiederhold, M. D., & Wiederhold, B. K. (2007). Virtual reality and interactive simulation for pain distraction. In: Blackwell Publishing Inc Malden, USA. DOI: 10.1111/j.1526-4637.2007.00381.x
  92. Wikimedia Commons (2011a). International 10-20 system for EEG electrode placement. https://commons.wikimedia.org/wiki/File:International_10-20_system_for_EEG-MCN.svg
  93. Wirsich, J., Ridley, B., Besson, P., Jirsa, V., Benar, C., Ranjeva, J.-P., & Guye, M. (2017). Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity. NeuroImage, 161, 251-260. DOI: 10.1016/j.neuroimage.2017.08.055
  94. Young, S. D., Adelstein, B. D., & Ellis, S. R. (2006). Demand characteristics of a questionnaire used to assess motion sickness in a virtual environment. Paper presented at the IEEE Virtual Reality Conference (VR 2006). DOI: 10.1109/vr.2006.44
  95. Zużewicz, K., Saulewicz, A., Konarska, M., & Kaczorowski, Z. (2011). Heart rate variability and motion sickness during forklift simulator driving. International Journal of Occupational Safety and Ergonomics, 17(4), 403-410. DOI: 10.1080/10803548.2011.11076903