DOI QR코드

DOI QR Code

한국 매봉산 참취의 공간적 분포 양상과 집단 구조

Spatial Distribution Patterns and Population Structure of Doellingeria scabra at Mt. Maebong in Korea

  • 투고 : 2019.04.15
  • 심사 : 2019.07.07
  • 발행 : 2019.07.30

초록

참취, Doellingeria scabra Thunb. (이전의 학명: Aster scaber Thunb.)는 국화과의 다년생 초본으로 한국의 야생산지에서 흔히 찾을 수 있다. 본 연구는 강원도 태백시 매봉산에 분포하는 참취의 국지적 집단에 대해 패치 특성을 측정하고자 하였다. 이 종의 공간적 분포를 평가하기 위해 분산의 지수, Lloyd 평균 군집도, Morisita 지수 등을 통해 자료를 분석했다. 참취 집단의 평균 밀도는 2.94이었다. 참취는 작은 규모의 플롯에서는 일정한 분포 또는 임의 분포를 하였고, 두 개의 큰 규모 플롯($16{\times}32m^2$$32{\times}32m^2$)에서는 응집 형태로 분포했다. 평균 밀집도($M^*$)는 0.916이었다. 평균 patchiness index (PAI)는 0.796이었다. Morisita의 계수는 플롯 크기가 커짐에 따라 감소하는 경향을 보였다. 이 집단에서 Eberhardt 지수(IE)의 예상 값은 2.623이었다. 참취의 Moran's I 값에서 처음 5개 구간은 양의 값이었다. 그 중 4개는 유의성을 나타내어 개체간 유사성은 8 m 이내에서 발생한다고 볼 수 있다. 본 연구는 매봉의 참취군락뿐만 아니라 다른 산의 산림 생태계 내 참취 군락의 지속 가능한 유지 및 복원에 대한 이론적 근거를 제공할 수 있다.

Doellingeria scabra Thunb. (syn. Aster scaber Thunb.), a perennial herb in the family Asteraceae, is frequently found in the wild mountain regions of Korea. This aim of this work was to measure the characteristics of patchiness of D. scabra in a local population on Mt. Maebong in Taeback-ci, Gangwon-do. The spatial distribution pattern of this species was estimated by analyzing ecological data by methods including the index of dispersion, Lloyd's mean crowding, and Morisita's index. The mean population density of the D. scabra population was 2.94. The D. scabra individuals were uniformly or randomly distributed in small-scale plots and were aggregately distributed in two large-scale plots ($16{\times}32m^2$ and $32{\times}32m^2$). The mean crowding ($M^*$) was 0.916. The mean patchiness index (PAI) was 0.796. Morisita's coefficient tended to decrease the density of the population as the plot size increased. The expected value of Eberhardt's index ($I_E$) in the local population was 2.623. Moran's I of D. scabra significantly differed from the expected value in 6 of 8 cases (75.0%). The first five classes were positive, with four showing statistical significance, indicating similarity among individuals in the first four distance classes (I-IV, 8 m), The results presented here could provide a theoretical basis for the conservation of D. scabra (Korean: chamchwi) and for the rehabilitation and sustainable management of forest ecosystems on Mt. Maebong, as well as on other mountains.

키워드

SMGHBM_2019_v29n7_762_f0001.png 이미지

Fig. 1. The mean aggregation number to find the reason for the aggregation of Doellingeria scabra.

SMGHBM_2019_v29n7_762_f0002.png 이미지

Fig. 2. The curves of patchiness in two areas of Doellingeria scabra using values of Green index.

Table 1. Spatial patterns of Doellingeria scabra individuals at different sampling quadrat sizes in Mt. Maebong

SMGHBM_2019_v29n7_762_t0001.png 이미지

Table 2. Changes in gathering strength of Doellingeria scabra at different sampling quadrat sizes

SMGHBM_2019_v29n7_762_t0002.png 이미지

Table 3. Clouding or patchiness indices of Doellingeria scabra at different sampling quadrat sizes

SMGHBM_2019_v29n7_762_t0003.png 이미지

Table 4. Spatial autocorrelation coefficients (Moran's I) among plots of Doellingeria scabra for eight distance classes

SMGHBM_2019_v29n7_762_t0004.png 이미지

참고문헌

  1. Arbous, A. G. and Kerrich, J. E. 1951. Accident statistics and the concept of accident proneness. Biometrics 7, 340-342. https://doi.org/10.2307/3001656
  2. Austin, M. P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model. 157, 101-118. https://doi.org/10.1016/S0304-3800(02)00205-3
  3. Chung, T. Y., Eiserich, J. P. and Shibamoto, T. 1993. Volatile compounds isolated from edible Korean chamchwi (Aster scaber Thunb). J. Agric. Food Chem. 41, 1693-1697. https://doi.org/10.1021/jf00034a033
  4. Clark, P. J. and Evans, F. C. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445-453. https://doi.org/10.2307/1931034
  5. Cliff, A. D. and Ord, J. K. 1971. Spatial Autocorrelation, pp. 178, Pion, London, England.
  6. Dale, M. R. T. 1999. Spatial Pattern Analysis in Plant Ecology, pp. 326, Cambridge: Cambridge University Press, Cambridge, England.
  7. Eberhardt, W. R. and Eberhardt, L. 1967. Estimating cottontail abundance from livertrapping data. J. Wild. Manage. 31, 87-96. https://doi.org/10.2307/3798362
  8. Fortin, M. J. and Dale, M. R. T. 2005. Spatial Analysis: A Guide for Ecologists, pp. 356, Cambridge University Press, Cambridge, England.
  9. Getzin, S. and Wiegand, K. 2007. Asymmetric tree growth at the stand level: random crown patterns and the response to slope. Forest Ecol. Manag. 242, 165-174. https://doi.org/10.1016/j.foreco.2007.01.009
  10. Greig-Smith, P. 1983. Quantitative Plant Ecology, pp. 359, 3rd ed. Blackwell Scientific, Oxford, USA.
  11. Green, R. H. 1966. Measurement of non-randomness in spatial distributions. Res. Pop. Ecol. 8, 1-7. https://doi.org/10.1007/BF02524740
  12. Gustafson, E. J. 1998. Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1, 143-156. https://doi.org/10.1007/s100219900011
  13. Hines, W. G. S. and Hines, R. J. O. 1979. The Eberhardt index and the detection of non-randomness of spatial point distributions. Biometrika 66, 73-80. https://doi.org/10.1093/biomet/66.1.73
  14. Johnson, D. J., Beaulieu, W. T., Bever, J. D. and Clay, K. 2012. Conspecific negative density dependence and forest diversity. Science 336, 904-907. https://doi.org/10.1126/science.1220269
  15. Lian, X., Jiang, Z., Ping, X., Tang, S., Bi, J. and Li, C. 2012. Spatial distribution pattern of the steppe toad-headed lizard (Phrynocephalus frontalis) and its influencing factors. Asian Herpet. Res. 3, 46-51. https://doi.org/10.3724/SP.J.1245.2012.00046
  16. Lio, J., Bogaert, J. and Nijs, I. 2015. Species interactions determine the spatial mortality patterns emerging in plant communities after extreme events. Sci. Rep. 5, doi: 10.1038/srep11229.
  17. Lloyd, M. 1967. Mean crowding. J. Anim. Ecol. 36, 1-30. https://doi.org/10.2307/3012
  18. Moeur, M. 1997. Spatial models of competition and gap dynamics in old-growth Tsuga heterophylla / Thuja plicata forests. Forest Ecol. Manag. 94, 175-186. https://doi.org/10.1016/S0378-1127(96)03976-X
  19. Moradi-Vajargah, M., Golizadeh, A., Rafiee-Dastjerdi, H., Zalucki, M. P., Hassanpour, M. and Naseri, B. 2011. Population density and spatial distribution pattern of Hypera postica (Coleoptera: Curculionidae) in Ardabil, Iran. Not. Bot. Horti. Agrobo. 39, 42-48 https://doi.org/10.15835/nbha3926381
  20. Patil, G. P. and Stiteler, W. M. 1974. Concepts of aggregation and their quantification: a critical review with some new results and applications. Res. Popul. Ecol. 15, 238-254. https://doi.org/10.1007/BF02510670
  21. Plotkin, J. B., Chave, J. and Ashton, P. S. 2002. Cluster analysis of spatial patterns in Malaysian tree species. Am. Nat. 160, 629-644. https://doi.org/10.1086/342823
  22. Pommerening, A. and Sarkka, A. 2013. What mark variograms tell about spatial plant interactions. Ecol. Model. 251, 64-72. https://doi.org/10.1016/j.ecolmodel.2012.12.009
  23. Shaukat, S. S., Aziz, S., Ahmed, W. and Shahzad, A. 2012. Population structure, spatial pattern and reproductive capacity of two semi-desert undershrubs Senna holosericea and Fagonia indica in southern Sindh, Pakistan. Pak. J. Bot. 44, 1-9.
  24. Sokal, R. R. and Oden, N. L. 1978a. Spatial autocorrelation in biology 1. Methodol. Biol. J. Lin. Soc. 10, 199-228. https://doi.org/10.1111/j.1095-8312.1978.tb00013.x
  25. Sokal, R. R. and Oden, N. L. 1978b. Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Lin. Soc. 10, 229-249. https://doi.org/10.1111/j.1095-8312.1978.tb00014.x
  26. Stachowicz, J. J. 2001. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235-246. https://doi.org/10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
  27. Thiruvengadam, M., Praveen, N., Yu, B., Kim, S. and Chung, I. 2014. Polyphenol composition and antioxidant capacity from different extracts of Aster scaber. Acta Biol. Hung. 65, 144-155. https://doi.org/10.1556/ABiol.65.2014.2.3
  28. Zhang, Y. T., Li, J. M., Chang, S. L., Li, X. and Lu, J. J. 2012. Spatial distribution pattern of Picea schrenkiana population in the Middle Tianshan Mountains and the relationship with topographic attributes. J. Arid Land 4, 457-468. https://doi.org/10.3724/SP.J.1227.2012.00457