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Doellingeria scabra Thunb. (syn. Aster scaber Thunb.), a perennial herb in the family Asteraceae, is fre-
quently found in the wild mountain regions of Korea. This aim of this work was to measure the char-
acteristics of patchiness of D. scabra in a local population on Mt. Maebong in Taeback-ci, Gangwon-do. 
The spatial distribution pattern of this species was estimated by analyzing ecological data by methods 
including the index of dispersion, Lloyd’s mean crowding, and Morisita’s index. The mean population 
density of the D. scabra population was 2.94. The D. scabra individuals were uniformly or randomly 
distributed in small-scale plots and were aggregately distributed in two large-scale plots (16×32 m2 
and 32×32 m2). The mean crowding (M*) was 0.916. The mean patchiness index (PAI) was 0.796. 
Morisita’s coefficient tended to decrease the density of the population as the plot size increased. The 
expected value of Eberhardt’s index (IE) in the local population was 2.623. Moran's I of D. scabra sig-
nificantly differed from the expected value in 6 of 8 cases (75.0%). The first five classes were positive, 
with four showing statistical significance, indicating similarity among individuals in the first four dis-
tance classes (I–IV, 8 m), The results presented here could provide a theoretical basis for the con-
servation of D. scabra (Korean: chamchwi) and for the rehabilitation and sustainable management of 
forest ecosystems on Mt. Maebong, as well as on other mountains. 
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Introduction

The distribution pattern of plant individuals in space as 

an outcome of possible regulatory mechanisms involved 

within the community, has attracted the attention of numer-

ous workers [8, 10]. Pattern in a population can be defined 

as a quantitative description of the horizontal distribution 

of individuals of a species within a community [23]. How 

can we measure dispersion in populations? Spatial statistics 

provides the quantitative description of natural variables 

distributed in space and time and now it is the most rapidly 

growing field in ecology [8, 22]. A typical approach again 

involves quadrat sampling. By counting the number of in-

dividuals within each sampling plot, we can see how the 

density of individuals changes from one part of the habitat 

to another. The spatial distribution pattern of plant pop-

ulations exhibits scale dependence, e.g. a species may show 

an aggregated distribution at one spatial scale and may 

change to a random or uniform distribution at a different 

scale [28].

There are three major components in any framework for 

statistical modelling in plant ecology [2]. There needs to be 

an ecological model, a data model, and a statistical model. 

The ecological model consists of the ecological knowledge 

and theory to be used or tested in the study. The data model 

consists of the decisions made regarding how the data are 

collected and how the data will be measured or estimated. 

The statistical model involves the choice of statistical meth-

od, error function and significance tests.

Doellingeria scabra (syn. Aster scaber Thunb.) is a perennial 

herb in the family Asteraceae from Eurasia which includes 

eastern Russia, China, Japan, and Korea. It is frequently 

found in wild mountain regions of Korea. It is known for 

its distinctive fragrance and taste, and is frequently used in 

Korean cuisine. Known among locals for its medicinal use, 

studies show it contains many beneficial compounds. Its 

Korean name is chamchwi (true chwi), and it is often simply 

referred to as chwinamul by the Korean locals [3].

Ultra high performance liquid chromatography (UHPLC) 
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analysis of the leaf extract revealed that myricetin (4850.45 

μg/g) was the most dominant flavonols, compared to quer-

cetin and kaempferol [27]. Caffeic acid was the dominant 

phenolic compound in D. scabra leaf extracts, it constituted 

about 104.20 μg/g, followed by gentisic acid (84.50 μg/g), 

gallic acid (61.05 μg/g) and homogentisic acid (55.65 μg/g) [27]. 

Here we studied a spatial analysis of D. scabra commun-

ities subjected to interpecific aggregation and interaction 

strength. The present study used the point pattern analysis 

method to investigate the variation in the spatial distribution 

pattern of D. scabra at different spatial scales and spatial au-

tocorrelation at different plots in a 16×32 m2 spatial scales 

at the Mountain Maebong in Korea.

Materials and Methods

Surveyed regions

This study was carried out on the populations of D. scabra, 

located at Mt. Maebong (1,303 m) (37°07'30''N/128°34'30''E) 

in Taeback-ci, Gangwon-do Province in Korea. The elevation 

of community of D. scabra ranges from 500 to 650 m. The 

site is characterized by a temperate climate with a little hot 

in summer and cold winter. Mean annual temperature rang-

es from -9.7(January) to 25.5℃ (August) with 8.7℃, and 

mean annual precipitation ranges from 19.2(December) to 

287.3 mm (August) with 1324.3 mm. 

Sampling procedure 

In May 2018 D. scabra plants with a meta-population 

ready were selected with the aim of studying their spatial 

distribution. Total 84 quadrats were sampled for the com-

plete experiment at Mt. Maebong. Spatial ecologists use arti-

ficial sampling units (so-called quadrats) to determine abun-

dance or density of species. The number of events per unit 

area are counted and divided by area of each square to get 

a measure of the intensity of each quadrat. We randomly 

located quadrates in each plot which was established in 

demes of D. scabra. Numerical simulations of previous analy-

ses and spatial autocorrelation (SA) were performed to in-

vestigate the significant differences at various distance 

scales, i.e., 1.0 m, 1.5 m, 2.0 m, 2.5 m and so on. However, 

no significant population structure was found within the 2.0 

m distance. Thus, the quadrat sizes were 2×2 m2, 2×4 m2, 

4×4 m2, 4×8 m2, 8×8 m2, 8×16 m2, 16×16 m2, and 16×32 m2. 

Index calculation and data analysis

The distance from an individual to its nearest neighbor, 

irrespective of direction, provides the basis for this measure 

of spacing. The spatial pattern of D. scabra was analyzed ac-

cording to the Neatest Neighbor Rule [4].

Average viewing distance (γA) was calculated as follows:

  

The γi is the distance from the individual to its nearest 

neighbor individual. N is the total number of individuals 

within the quadrat.

The expectation value of mean distance of individuals 

within a quadrat (γB) was calculated as follows: 

Where D is population density and the number of in-

dividuals per plot size. The mean of all those quadrat counts 

yields the population density, expressed in numbers of in-

dividuals per quadrat area.

R = γA / γB 

The significance index of the deviation of R that departs 

from the number of “1” is calculated from the following for-

mula [15].

, 

One test for spatial pattern and associated index of dis-

persion that can be used on random-point-to-nearest-organ-

ism distances was suggested by Eberhardt [7] and analyzed 

further by Hines and Hines [13]: IE = (s/m)2＋1

Where IE = Eberhardt’s index of dispersion for point-to-or-

ganism distances, s = observed standard deviation of dis-

tances, m = mean of point-to-organism distances. Many spa-

tial dispersal parameters were calculated the degree of pop-

ulation aggregation under different sizes of plots by dis-

persion indices: index of clumping or the index of dispersion 

(C). Dispersion of a population can be classified through a 

calculation of the variance mean ratio [19].  

Index of dispersion: C = S2 / m

When C = 1 is random dispersion, <1 regular and >1 

aggregated. Departure from a random distribution can be 

tested by calculating the index of dispersion (ID), where n 

denotes the number of samples:

ID = (n-1)s2/m 

ID is approximately distributed as x2 with n-1 degrees 

of freedom. Values of ID which fall outside a confidence 

interval bounded with n-1 degrees of freedom and selected 

probability levels of 0.95 and 0.05, for instance, would in-

dicate a significant departure from a random distribution. 

This index can be tested by Z value as follows:
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Table 1. Spatial patterns of Doellingeria scabra individuals at different sampling quadrat sizes in Mt. Maebong

Quadrat size (m×m) Density R CR IE Distribution pattern

2×2

2×4

4×4

4×8

8×8

 8×16

16×16

16×32

Mean

9.750

6.001

2.563

1.938

1.469

0.930

0.543

0.350

2.943

2.329

2.520

2.092

1.870

2.028

1.596

0.985

0.960

1.798

15.876

20.150

13.379

13.110

19.067

12.432

-0.339

-1.032

11.580

3.704

2.216

2.559

2.499

2.505

2.513

2.468

2.519

2.623

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Aggregated

Aggregated

-

If 1.96 ≥ Z ≥ -1.96, the spatial distribution would be 

random but if Z < - 1.96 or Z>1.96, it would be uniform 

and aggregated, respectively [20].

Mean crowding (M*), patchiness index (PAI), negative bi-

nominal distribution index K, Ca indicators (Ca is the name 

of one index) [17] and Morisita index (IM) were calculated 

with Microsoft Excel 2014. The formulae are as follows:

Aggregation index  

Mean crowding

   =  +   =   +   - 1

Patchiness index    

Aggregation intensity 

   

Ca indicators Ca = 1/k

IM =  

Where S2 is variance and m is mean density of plants.

The mean aggregation number to find the reason for the 

aggregation of D. scabra was calculated [1]. 

Where r is the value of chi-square when 2k is the degree 

of freedom and k is the aggregation intensity. Green index 

(GI) is a modification of the index of cluster size that is in-

dependent of n [11].

Spatial autocorrelation

When a plant population or community is sampled, the 

samples have a spatial relationship with each other. The con-

cepts of autocorrelation and auto-covariance are derived 

from the familiar statistical concepts of covariance and 

correlation. For two variables, x and y, their covariance is 

related to the expected value of their product: Cov (x, y) 

= E(x−E(x))×E(y−E(y)) = E(xy)−E(x)×E(y).

Their correlation is: ρ (x, y) = Cov (x, y)/√Var(x)Var(y).

The distance classes are 0-2.0 m (class I), 2.0-4.0 m (class 

II), 4.0-6.0 m (class III), 6.0-8.0 m (class IV), 8.0-10.0 m (class 

V), 10.0-12.0 m (class VI), 12.0-14.0 m (class VII), and 

14.0-16.0 m (class VIII). The codes of classes are the same 

as in the distance classes and are listed Table 1.

The spatial structure was quantified by Moran's I, a co-

efficient of spatial autocorrelation (SA) [24]. As applied in 

this study, Moran's I quantifies the similarity of pairs of spa-

tially adjacent individuals relative to the population sample 

as a whole. The value of I ranges between +1 (completely 

positive autocorrelation, i.e., paired individuals have identi-

cal values) and -1 (completely negative autocorrelation). 

Each plant was assigned a value depending on the presence 

or absence of a specific individual. If the ith plant was a 

homozygote for the individual of interest, the assigned pi 

value was 1, while if the individual was absent, the value 

0 was assigned [25].

Pairs of sampled individuals were classified according to 

the Euclidian distance, dij, so that class k included dij satisfy-

ing k-1<dij<k+1, where k ranges from 1 to 10. The interval 

for each distance class was 3.0 m. Moran's I statistic for class 

k was calculated as follows: 

I (k) = n∑i∑j(i≠j)WijZiZj/S∑Zi2

where Zi is pi - p (p is the average of pi); Wij is 1 if the 

distance between the ith and jth plants is classified into class 

k; otherwise, Wij is 0; n is the number of all samples and 

S is the sum of Wij {∑i∑j(i ≠j)Wij} in class k. Under the 

randomization hypothesis, I (k) has the expected value u1 

= -1/(n - 1) for all k. Its variance, u2, has been given, for 

example, in Sokal and Oden [9]. Thus, if an individual is 

randomly distributed for class k, the normalized I (k) for 
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Table 2. Changes in gathering strength of Doellingeria scabra at different sampling quadrat sizes

Quadrat size (m×m)
Aggregation or dispersion indices

C ID Z PI Distribution pattern

2×2

2×4

4×4

4×8

8×8

 8×16

16×16

16×32

Mean 

0.649

0.641

0.988

0.992

1.259

1.271

1.250

1.290

1.043

 24.667

 30.148

 39.503

 60.532

117.104

149.944

172.458

229.693

103.006

-1.636

-1.879

0.004

0.003

1.702

1.988

1.990

2.592

0.560

-1.073

-1.417

-51.949

-85.246

3.228

2.899

2.664

2.926

-15.996

Uniform

Uniform

Uniform

Uniform

Uniform

Aggregation

Aggregation

Aggregation

-

Table 3. Clouding or patchiness indices of Doellingeria scabra 

at different sampling quadrat sizes

Quadrat size

(m×m)

No.

Quadrat

Clouding or patchiness indices

M* PAI IM

2×2

2×4

4×4

4×8

8×8

 8×16

16×16

16×32

Mean

32

16

12

8

6

4

4

2

10.5

0.026

0.150

0.633

1.007

0.647

1.096

1.056

0.916

0.691

0.068

0.294

0.981

0.007

0.988

1.310

1.345

1.376

0.796

0.073

0.307

1.019

1.021

0.999

1.327

1.359

0.480

0.823

the standard normal deviation (SND) for the plant genotype, 

g (k) = {I (k) - u1}/u21/2, asymptotically has a standard nor-

mal distribution [5]. Hence, SND g(k) values exceeding 1.96, 

2.58, and 3.27 are significant at the probability levels of 0.05, 

0.01, and 0.001, respectively.

Results 

The optimum sample size is the smallest number of sam-

ple units that would satisfy the objectives of the sampling 

program and achieve the desired precision of estimates. Each 

type of joined individuals and for each distance class of sep-

aration were tested for significant deviation from random 

expectations by calculating the standard normal deviation. 

No significant population structure of D. scabra was found 

within the 2.0 m quadrate sizes. Population densities (D) of 

D. scabra populations at Mt. Maebong varied from 0.35 to 

2.97, with a mean of 2.94 (Table 1). Small quadrate sizes such 

as 2×2 m2, 2×4 m2, and 4×4 m2 have relatively high D values 

(>2), whereas larger or wider quadrate sizes such as 8×16 

m2, 16×16 m2, and 16×32 m2 have, comparatively, very low 

D values (<1). The values (R) of spatial distance (the rate 

of observed distance-to-expected distance) among the near-

est individuals were higher than 1 and the significant index 

of CR was >2.58. If by this parameter, the six scale plots 

(2×2 m2, 2×4 m2, 4×4 m2, 4×8 m2, 8×8 m2, and 8×16 m2) of 

D. scabra at Mt. Maebong were uniformly distributed in the 

forest community. However, D. scabra was aggregately dis-

tributed in two large scale plots (16×32 m2 and 32×32 m2). 

Eberhardt’s index of dispersion for point-to-organism dis-

tances (IE) varied from 2.216 (2×4 m) to 3.704 (2×2 m2), with 

a mean of 2.623. 

The values dispersion index (C) of D. scabra at Mt. 

Maebong were lower at four scale plots (2×2 m2, 2×4 m2, 

4×4 m2, and 4×8 m2) than 1 except four large scale plots 

(8×8 m2, 8×16 m2, 16×16 m2, and 16×32 m2) (Table 2). 

Departure from a random distribution can be tested by cal-

culating the index of dispersion (ID). In this Model, values 

of ID ranged from 24.67 to 229.69. Large scale plots were 

considerably greater than those of small scale plots, indicat-

ing that large scales plots tend to be aggregated. This ID 

index can be tested by Z value. If 1.96 ≥ Z ≥ -1.96, the 

spatial distribution would be random. Thus, the six scale 

plots (2×2 m2, 2×4 m2, 4×4 m2, 4×8 m2, 8×8 m2, and 8×16 

m2) of D. scabra at Mt. Maebong were random distributed 

in the forest community. Two large plots (16x16 m2 and 

16×32 m2) were aggregated (Z>1.96). Aggregation intensity 

(PI) ranged from -85.246 to 3.228 and it was not strong. 

The mean crowding (M*) was 0.92(Table 3). The mean 

patchiness index (PAI) was 0.796. Both were showed positive 

values for all plots. The mean Morisita index (IM) was 0.82. 

The values of δ were showed an overly steep slope at the 

plot 4×4 m2 (Fig. 1). The values of Morisita’s coefficient 

showed a tendency to decrease as the plot size increased 

(Fig. 2). 

The spatial auto coefficient, Moran's I is presented in 

Table 4. Separate counts for each type of joined individuals 
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Fig. 1. The mean aggregation number to find the reason for 

the aggregation of Doellingeria scabra.

Fig. 2. The curves of patchiness in two areas of Doellingeria sca-

bra using values of Green index.

Table 4. Spatial autocorrelation coefficients (Moran's I) among plots of Doellingeria scabra for eight distance classes

I II III IV V VI VII VIII

0.486
*** 0.403*** 0.292* 0.274* 0.113 -0.053 -0.166* -0.234**

*: p<0.05, **: p<0.01, ***: p<0.001.

and for each distance class of separation were tested for sig-

nificant deviation from random expectations by calculating 

the SND. Moran's I of D. scabra significantly differed from 

the expected value in 6 of 8 cases (75.0%). The first five 

classes were positive. Four of them showed significance, in-

dicating similarity among individuals in the first four dis-

tance classes (I~IV), i.e., pairs of individuals can separate 

by more than 8.0 m. Three of these values (37.5%) were neg-

ative, indicating a partial dissimilarity among pairs of in-

dividuals at the VI distance class scales (10-12 m). 

Discussion

Thus, two large plots (16×16 m2 and 16×32 m2) of D. scabra 

at Mt. Maebong were clustered based on the Neatest 

Neighbor Rule (Table 1). The result of one plot (8×16 m2) 

in Table 2 was inconsistent with the previous results 

(Neatest Neighbor Rule). One of the reasons is in uneven 

collection and distribution pattern of the D. scabra was quad-

rat-sampling dependent. As Morisita’s coefficient estimates 

spatial distribution pattern using the mean and variance of 

each sampling date separately, so this index is more perfect 

than dispersion index [19]. The detailed knowledge of dis-

persion in different time intervals during growing season 

would be useful for research strategies more than manage-

ment programs. 

The comparison of Moran’s I values to a logistic re-

gression indicated that a highly significant percentage of in-

dividual dispersion in D. scabra populations at Mt. Maebong 

could be explained by isolation by distance (Table 4). 

The expected value of IE in a random population is 2.62 

(Table 1). IE values for all quadrates are larger than 1.27. 

Under the hypothesis, D. scabra is clumping. Clumped dis-

persion is often due to an uneven distribution of nutrients 

or other resources in the environment. Species interactions 

can be intra- or interspecific. The former is usually negative 

due to conspecific competition for the same resources [14], 

while the latter can be negative (interspecific competition), 

positive (facilitation) or neutral.

Although positive interspecific interactions are not rare, 

the positive interaction often occurs because one species 

ameliorates a physical, physiological or trophic stress that 

otherwise compromises the fitness of a resource exploiter 

[16]. Also during extreme events which drive much of the 

gap formation in plant communities, species interactions 

take place and more importantly influence the survival of 

individuals [26]. In a high density plots, interspecies com-

petition is maintained within a certain distance (Table 1). 

However, in less dense plots, D. scabra could co-aggregate 

with each other to compete with other species.

M* was proposed by Lloyd to indicate the possible effect 

of mutual interference or competition among individuals 

[19]. As an index, mean crowding is highly dependent upon 

both the degree of clumping and population density. Patch- 

based measures of pattern include size, number, and density 

of patches [12]. Useful edge information may include perim-

eter of individual patches, total perimeter of all patches of 

a particular class, the frequency of specific patch adjacencies, 

and various edge metric that incorporate the contrast (degree 
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of dissimilarity) between the patch and its neighbors. 

However, different spatial patterns may also reflect differ-

ential abilities of species to survive intra and interspecific 

competition during succession [9]. The effects of density-de-

pendent mortality may be revealed by comparing the change 

in spatial pattern of different life-history stages [18, 21].

Conclusion, M* and PAI showed positive values for all 

plots. When the three indices C, M*, PAI were <1 and their 

values of PI were also shown smaller than zero, it means 

uniform distributed. In D. scabra, the two indices, C, PAI 

were >1 and their values of PI were also shown greater than 

zero, thus it means aggregately distributed. In many near 

neighbor plants of D. scabra at Mt. Maebong, density be-

tween neighboring individuals was high and similarity was 

high. Whereas, two large plots (16×16 m2 and 16×32 m2) of 

D. scabra were clustered each other and aggregation. This 

plant is distributed in low mountains and is easy to collect. 

The genetic resources can be secured by preserving the sizes 

of the effective group of this plant. According to the results 

of this study, the size of the D. scabra population should 

be at least 8×8 m2.
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초록：한국 매봉산 참취의 공간적 분포 양상과 집단 구조

이병룡1․허만규2*

(1서원대학교 생물교육과, 2동의대학교 식품공학과)

참취, Doellingeria scabra Thunb. (이전의 학명: Aster scaber Thunb.)는 국화과의 다년생 초본으로 한국의 야생 

산지에서 흔히 찾을 수 있다. 본 연구는 강원도 태백시 매봉산에 분포하는 참취의 국지적 집단에 대해 패치 특성

을 측정하고자 하였다. 이 종의 공간적 분포를 평가하기 위해 분산의 지수, Lloyd 평균 군집도, Morisita 지수 등을 

통해 자료를 분석했다. 참취 집단의 평균 밀도는 2.94이었다. 참취는 작은 규모의 플롯에서는 일정한 분포 또는 

임의 분포를 하였고, 두 개의 큰 규모 플롯(16×32 m2와 32×32 m2)에서는 응집 형태로 분포했다. 평균 밀집도(M*)

는 0.916이었다. 평균 patchiness index (PAI)는 0.796이었다. Morisita의 계수는 플롯 크기가 커짐에 따라 감소하는 

경향을 보였다. 이 집단에서 Eberhardt 지수(IE)의 예상 값은 2.623이었다. 참취의 Moran's I 값에서 처음 5개 구간

은 양의 값이었다. 그 중 4개는 유의성을 나타내어 개체간 유사성은 8 m 이내에서 발생한다고 볼 수 있다. 본 

연구는 매봉의 참취군락뿐만 아니라 다른 산의 산림 생태계 내 참취 군락의 지속 가능한 유지 및 복원에 대한 

이론적 근거를 제공할 수 있다.


