DOI QR코드

DOI QR Code

Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand

실내 굴진 시험을 통한 폼 주입 조건에 따른 인공 사질토 지반에서 EPB TBM 굴진성능에 대한 고찰

  • Lee, Hyobum (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Shin, Dahan (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kim, Dae-Young (Dept. of R&D, Hyundai Engineering & Construction) ;
  • Shin, Young Jin (Dept. of R&D, Hyundai Engineering & Construction) ;
  • Choi, Hangseok (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 이효범 (고려대학교 건축사회환경공학부) ;
  • 신다한 (고려대학교 건축사회환경공학부) ;
  • 김대영 (현대건설 연구개발본부) ;
  • 신영진 (현대건설 연구개발본부) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2019.05.16
  • Accepted : 2019.07.05
  • Published : 2019.07.31

Abstract

During EPB TBM tunnelling, an appropriate application of additives such as foam and polymer is an essential factor to secure the stability of TBM as well as tunnelling performance. From the '90s, there have been many studies on the optimal injection of additives worldwidely contrary to the domestic situation. Therefore, in this paper, the foam, which is widely adopted for soil conditioning, was selected as an additive in order to investigate the effect of foam injection on TBM performance through a series of laboratory excavation tests. The excavation experiments were carried out on artificial sandy soil specimens with consideration of the variance of FIR (Foam Injection Ratio), FER (Foam Expansion Ratio) and $C_f$ (Surfactant Concentration), which indicate the amount and quality of the foam. During the tests, torque values were measured, and the workability of conditioned soil was evaluated by comparing the slump values of muck after each experiment. In addition, a weight loss of the replaceable aluminum cutter bits installed on the blade was measured to estimate the degree of abrasion. Finally, the foam injection ratio for the optimal TBM excavation for the typical soil specimen was determined by comparing the measured torque, slump value and abrasion. Note that the foam injection conditions satisfying the appropriate level of machine load, mechanical wear and workability are essential in the EPB TBM operational design.

EPB TBM 굴진 중 다양한 지반 조건에서 적절한 양의 폼(Foam), 폴리머(Polymer) 등 첨가제의 주입은 TBM 공사의 안정성은 물론 굴진 성능을 결정하는 중요한 요소이다. 국외에서는 90년대부터 최근까지 EPB TBM 공법을 토사 지반에 적용할 때 최적의 첨가제 주입에 대한 연구가 활발하게 이루어졌으나 국내에서는 이와 관련된 연구가 매우 부족한 실정이다. 따라서 본 연구에서는 굴착토 컨디셔닝에 가장 널리 사용되는 폼을 첨가제로 선정하고 폼 주입에 따른 토사 지반에서의 TBM 굴진 성능 변화를 일련의 실내 굴진 시험을 통해 파악하였다. 굴진 시험은 인공 사질토 지반을 동일 다짐 조건으로 조성하고 폼의 주입량과 상태를 나타내는 변수인 FIR (Foam Injection Ratio), FER (Foam Expansion Ratio), $C_f$ (Surfactant Concentration) 값을 변화시켜가며 수행되었으며, 각 시험에서 굴진 중 측정된 토크 값을 측정하였다. 또한 굴진 시험 후, 배토된 흙의 슬럼프 값을 비교하여 컨디셔닝 된 시료의 워커빌리티(workability)를 평가하였으며, 블레이드에 설치된 알루미늄 커터의 무게 변화를 측정하여 컨디셔닝 조건에 따른 동일 위치에서의 커터 마모량을 비교하였다. 최종적으로 측정된 토크, 슬럼프 값, 마모량 결과의 비교를 통해 본 연구에서 적용된 인공 사질토 지반에서 최적 TBM 굴진을 위한 폼 주입비를 도출하였다. 연구 결과를 통해 지반 조건에 따라 다른 최적의 TBM 굴진 성능을 확보하기 위해서는 장비 부하, 기계 마모, 워커빌리티 확보에 대하여 적정 수준을 만족하는 폼 주입 조건이 존재하고 이에 대응하기 위한 사전 폼 주입 설계가 필요한 것으로 나타났다.

Keywords

TNTNB3_2019_v21n4_545_f0001.png 이미지

Fig. 1. Composition of laboratory EPB TBM excavation test apparatus

TNTNB3_2019_v21n4_545_f0002.png 이미지

Fig. 2. Particle size distribution of artificial sand for the experiment

TNTNB3_2019_v21n4_545_f0003.png 이미지

Fig. 3. Comparison of torque values with different FIR (torque)

TNTNB3_2019_v21n4_545_f0004.png 이미지

Fig. 4. Change of weight of bits with different FIR (abrasion)

TNTNB3_2019_v21n4_545_f0005.png 이미지

Fig. 5. Slump values of muck with different FIR (slump)

TNTNB3_2019_v21n4_545_f0006.png 이미지

Fig. 6. Comparison of torque values with different FER (torque)

TNTNB3_2019_v21n4_545_f0007.png 이미지

Fig. 7. Change of weight of bits with different FER (abrasion)

TNTNB3_2019_v21n4_545_f0008.png 이미지

Fig. 8. Slump values of muck with different FER (slump)

TNTNB3_2019_v21n4_545_f0009.png 이미지

Fig. 9. Comparison of torque values with different Cf (torque)

TNTNB3_2019_v21n4_545_f0010.png 이미지

Fig. 10. Change of weight of bits with different Cf (abrasion)

TNTNB3_2019_v21n4_545_f0011.png 이미지

Fig. 11. Slump values of muck with different Cf (slump)

Table 1. Properties of foam surfactant for laboratory experiment

TNTNB3_2019_v21n4_545_t0001.png 이미지

Table 2. Laboratory test cases of EPB TBM excavation considering foam injection condition

TNTNB3_2019_v21n4_545_t0002.png 이미지

Table 3. Summary of laboratory excavation test results

TNTNB3_2019_v21n4_545_t0003.png 이미지

References

  1. ASTM (2015). ASTM C143, Standard test method for slump of hydraulic-cement concrete, C143/C143M-15a, West Conshohocken, PA, ASTM International.
  2. Budach, C. (2012), Untersuchungen zum erweiterten Einsatz von Erddruckshilden in grobkornigem Lockergestein, Ph.D. Thesis, Ruhr-Universitat Bochum, pp. 174-180.
  3. Budach, C., Thewes, M. (2015), "Application ranges of EPB shields in coarse ground based on laboratory research", Tunnelling and Underground Space Technology, Vol. 50, pp. 296-304. https://doi.org/10.1016/j.tust.2015.08.006
  4. EFNARC, A. (2005). Specifications and Guidelines for the use of specialist products for Mechanized Tunnelling (TBM) in Soft Ground and Hard Rock. Recommendation of European Federation of Producers and Contractors of Specialist Products for Structures.
  5. Gharahbagh, E.A., Rostami, J., Palomino, A.M. (2011), "New soil abrasion testing method for soft ground tunneling applications", Tunnelling and Underground Space Technology, Vol. 26, No. 5, pp. 604-613. https://doi.org/10.1016/j.tust.2011.04.003
  6. Gharahbagh, E.A., Rostami, J., Talebi, K. (2014), "Experimental study of the effect of conditioning on abrasive wear and torque requirement of full face tunneling machines", Tunnelling and Underground Space Technology, Vol. 41, pp. 127-136. https://doi.org/10.1016/j.tust.2013.12.003
  7. Hedayatzadeh, M., Rostami, J., Peila, D., Forough, O., Salazar, C.G.O. (2017), "Development of a soil abrasion test and analysis of impact of soil conditioning on tool wear for soft ground mechanized tunneling using EPB machines", Proceedings of the World Tunnel Congress 2017, Bergen, pp. 1-6.
  8. Herrenknecht, M., Thewes, M., Budach, C. (2011), "The development of earth pressure shields: from the beginning to the present/Entwicklung der Erddruckschilde: Von den Anfängen bis zur Gegenwart" Geomechanics and Tunnelling, Vol. 4, No. 1, pp. 11-35. https://doi.org/10.1002/geot.201100003
  9. Jakobsen, P.D., Bruland, A., Dahl, F. (2013a), "Review and assessment of the NTNU/SINTEF Soil Abrasion Test $(SAT^{TM})$ for determination of abrasiveness of soil and soft ground", Tunnelling and Underground Space Technology, Vol. 37, pp. 107-114. https://doi.org/10.1016/j.tust.2013.04.003
  10. Jakobsen, P.D., Langmaack, L., Dahl, F., Breivik, T. (2013b), "Development of the Soft Ground Abrasion Tester (SGAT) to predict TBM tool wear, torque and thrust", Tunnelling and Underground Space Technology, Vol. 38, pp. 398-408. https://doi.org/10.1016/j.tust.2013.07.021
  11. Kim, D.Y., Kang, H.B., Shin, Y.J., Jung, J.H., Lee, J.W. (2018a), "Development of testing apparatus and fundamental study for performance and cutting tool wear of EPB TBM in soft ground", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 2, pp. 453-467. https://doi.org/10.9711/KTAJ.2018.20.2.453
  12. Kim, T.H.., Kwon, Y.S., Chung, H., Lee, I.M. (2018b), "A simple test method to evaluate workability of conditioned soil used for EPB Shield TBM" Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 6, pp. 1049-1060. https://doi.org/10.9711/KTAJ.2018.20.6.1049
  13. Langmaack, L. (2000), "Advanced technology of soil conditioning in EPB shield tunneling", Proceedings of North American Tunneling Congress 2000, Boston, pp. 525-542.
  14. Lee, H., Shin, D., Kim, D.Y., Shin, Y.J., Choi, H. (2019), "Prediction of EPB shield TBM performance using a lab scale excavation test with different soil conditions", Tunnels and Underground Cities: Engineering and Innovation meet Archaeology: Proceedings of the World Tunnel Concgress 2019, Naples, pp. 2446-2454.
  15. Maidl, U. (1995), Erweiterung der Einsatzbereiche der Erddruckschilde durch bodenkonditionierung mit Schaum, Ph.D. Thesis, Institut fur Konstruktiven Ingenieurbau, Ruhr-Universitat Bochum, pp. 1-184.
  16. Mori, L. (2016), Advancing understanding of the relationship between soil conditioning and earth pressure balance tunnel boring machine chamber and shield annulus behavior, Ph.D. Thesis, Colorado School of Mines, pp. 1-191.
  17. Mori, L., Alavi, E., Mooney, M. (2017), "Apparent density evaluation methods to assess the effectiveness of soil conditioning", Tunnelling and Underground Space Technology, Vol. 67, pp. 175-186. https://doi.org/10.1016/j.tust.2017.05.006
  18. Mori, L., Mooney, M., Cha, M. (2018), "Characterizing the influence of stress on foam conditioned sand for EPB tunneling", Tunnelling and Underground Space Technology, Vol. 71, pp. 454-465. https://doi.org/10.1016/j.tust.2017.09.018
  19. Peila, D., Oggeri, C., Borio, L. (2009), "Using the slump test to assess the behavior of conditioned soil for EPB tunneling", Environmental and Engineering Geoscience, Vol. 15, No. 3, pp. 167-174. https://doi.org/10.2113/gseegeosci.15.3.167
  20. Psomas, S. (2001), Properties of foam/sand mixtures for tunnelling applications, Master Thesis, England: St Hugh's College, University of Oxford, pp. 1-147.
  21. Quebaud, S., Sibai, M., Henry, J.P. (1998), "Use of chemical foam for improvements in drilling by earth-pressure balanced shields in granular soils", Tunnelling and Underground Space Technology, Vol. 13, No. 2, pp. 173-180. https://doi.org/10.1016/S0886-7798(98)00045-5
  22. Rostami, J., Gharahbagh, E.A., Palomino, A.M., Mosleh, M. (2012), "Development of soil abrasivity testing for soft ground tunneling using shield machines", Tunnelling and Underground Space Technology, Vol. 28, pp. 245-256. https://doi.org/10.1016/j.tust.2011.11.007
  23. Salazar, C.G.O., Todaro, C., Bosio, F., Bassini, E., Ugues, D., Peila, D. (2018), "A new test device for the study of metal wear in conditioned granular soil used in EPB shield tunneling", Tunnelling and Underground Space Technology, Vol. 73, pp. 212-221. https://doi.org/10.1016/j.tust.2017.12.014
  24. Vinai, R., Oggeri, C., Peila, D. (2008), "Soil conditioning of sand for EPB applications: A laboratory research", Tunnelling and Underground Space Technology, Vol. 23, No. 3, pp. 308-317. https://doi.org/10.1016/j.tust.2007.04.010