DOI QR코드

DOI QR Code

A study on the field application of high strength steel pipe reinforcement grouting

고강도 강관 보강 그라우팅의 현장 적용성에 관한 연구

  • Shin, Hyunkang (Infrastructure Design Group, Infra Division, POSCO E&C) ;
  • Jung, Hyuksang (Dept. of Railway Construction and Safety Engineering, Dongyang University) ;
  • Ryu, Yongsun (Chemius Korea Co., Ltd.) ;
  • Kim, Donghoon (City Planning Team of Jeju Urban Construction Department)
  • 신현강 ((주)포스코건설 인프라사업본부 인프라설계그룹) ;
  • 정혁상 (동양대학교 철도건설안전공학과) ;
  • 유용선 ((주)케미우스코리아) ;
  • 김동훈 (제주시 도시건설국 도시계획팀)
  • Received : 2019.04.16
  • Accepted : 2019.05.31
  • Published : 2019.07.31

Abstract

In this paper, we conducted experimental investigation on the field applicability through the verification of reinforcement effect of the steel pipe reinforcement grouting using high strength steel pipe. SGT275 (formerly known as STK400) steel pipe is generally applied to the traditional steel pipe reinforcement grouting method. However, the analysis of tunnel collapse cases applying the steel pipe reinforcement grouting shows that there are cases where the excessive bending and breakage of steel pipe occur. One of the reasons causing these collapses is the lack of steel pipe stiffness responding to the loosening load of tunnels caused by excavation. The strength of steel pipe has increased due to the recent development of high strength steel pipe (SGT550). However, since research on the reinforcement method considering strength increase is insufficient, there is a need for research on this. Therefore, in this study, we conducted experiments on the tensile and bending strength based on various conditions between high strength steel pipe, and carried out basic research on effective field application depending on the strength difference of steel pipe through the conventional design method. In particular, we verified the reinforcement effect of high strength steel pipe through the measurement results of deformed shape and stress of steel pipe arising from excavation after constructing high strength steel pipe and general steel pipe at actual sites. The research results show that high strength steel pipe has excellent bending strength and the reinforcement effect of reinforced grouting. Further, it is expected that high strength steel pipe will have an arching effect thanks to strength increase.

본 논문에서는 고강도 강관을 이용한 강관 보강 그라우팅의 보강 효과 검증을 통해 현장 적용성에 관한 실험적 내용을 다루었다. 기존 강관보강 그라우팅 공법에는 SGT275 (구 STK400) 강관을 일반적으로 적용하고 있으나, 강관 보강 그라우팅이 적용된 터널의 붕락사례를 보면 강관의 과도한 꺾임, 파단 등의 사례가 발생되고 있다. 이러한 사례가 발생하는 여러 원인 중 굴착에 따른 터널의 이완하중에 대응하는 강관의 강성 부족이 그 원인이 될 수 있다. 최근 들어 고강도 강관(SGT550)의 개발로 강관의 강도가 증가했으나, 강도 증대를 고려한 보강방안에 대한 연구가 미흡하므로 이에 대한 연구가 필요한 실정이다. 따라서 본 연구에서는 고강도 강관과 일반 강관의 이음 유무, 주입재의 충전 여부 등 다양한 조건에 대해 인장강도 및 휨 전단력 실험을 수행하고, 기존 제시된 설계법을 통해 강관의 강도 차이에 따른 효율적인 현장 적용성에 대한 기초 연구를 수행하였다. 특히, 실제 현장에 고강도 강관과 일반 강관을 시공하고 굴착에 따른 강관의 변위형상과 응력에 대한 계측 결과를 통해 고강도 강관의 보강 효과를 검증하였다. 연구결과 고강도 강관은 휨 강도가 우수하여 보강효과가 우수한 것으로 나타났으며, 강도 증진효과로 인해 아칭효과도 기대된다.

Keywords

TNTNB3_2019_v21n4_455_f0001.png 이미지

Fig. 1. Examples of steel pipe damage (KICT, 2008)

TNTNB3_2019_v21n4_455_f0002.png 이미지

Fig. 2. Examples of steel pipe using steel pipe reinforcement grouting

TNTNB3_2019_v21n4_455_f0003.png 이미지

Fig. 3. Types of steel pipes for testing

TNTNB3_2019_v21n4_455_f0004.png 이미지

Fig. 4. Production process of test steel pipe

TNTNB3_2019_v21n4_455_f0005.png 이미지

Fig. 5. Tensile strength test

TNTNB3_2019_v21n4_455_f0006.png 이미지

Fig. 6. Tensile strength test results

TNTNB3_2019_v21n4_455_f0007.png 이미지

Fig. 7. Bending shear force tests (by type of steel pipe and whether joint etc.)

TNTNB3_2019_v21n4_455_f0008.png 이미지

Fig. 8. Bending shear force test results

TNTNB3_2019_v21n4_455_f0009.png 이미지

Fig. 9. Load concept acting on steel pipe (Kim et al., 2003)

TNTNB3_2019_v21n4_455_f0010.png 이미지

Fig. 10. Vertical load and horizontal load acting on steel pipe (Kim et al., 2003)

TNTNB3_2019_v21n4_455_f0011.png 이미지

Fig. 11. Stress of steel pipe according to excavation distance and relaxed loads

TNTNB3_2019_v21n4_455_f0012.png 이미지

Fig. 12. Summary of field test construction

TNTNB3_2019_v21n4_455_f0013.png 이미지

Fig. 13. Results of measurement

TNTNB3_2019_v21n4_455_f0014.png 이미지

Fig. 14. Stress comparison of steel pipes by theoretical and measured stress

Table 1. Comparison of mechanical properties and chemical composition of steel pipes

TNTNB3_2019_v21n4_455_t0001.png 이미지

Table 2. Comparison of steel pipe specifications

TNTNB3_2019_v21n4_455_t0002.png 이미지

Table 3. Tensile strength test cases of steel pipes

TNTNB3_2019_v21n4_455_t0003.png 이미지

Table 4. Shear force test cases of steel pipes

TNTNB3_2019_v21n4_455_t0004.png 이미지

Table 5. Tensile strength test result of steel pipes

TNTNB3_2019_v21n4_455_t0005.png 이미지

Table 6. Bending shear force test result of steel pipes

TNTNB3_2019_v21n4_455_t0006.png 이미지

Table 7. Conditions for calculation of stress in steel pipe

TNTNB3_2019_v21n4_455_t0007.png 이미지

Table 8. Stress of small diameter steel pipe according to excavation distance and relaxed loads (MPa)

TNTNB3_2019_v21n4_455_t0008.png 이미지

Table 9. Stress of large diameter steel pipe according to excavation distance and relaxed loads (MPa)

TNTNB3_2019_v21n4_455_t0009.png 이미지

Table 10. Stress comparison of steel pipes

TNTNB3_2019_v21n4_455_t0010.png 이미지

Table 11. Stress comparison of steel pipe after 1 m excavation

TNTNB3_2019_v21n4_455_t0011.png 이미지

Table 12. Stress comparison of steel pipe after 2 m excavation

TNTNB3_2019_v21n4_455_t0012.png 이미지

Table 13. Stress comparison of steel pipe after 3 m excavation

TNTNB3_2019_v21n4_455_t0013.png 이미지

Table 14. Stress comparison of steel pipe after 4 m excavation

TNTNB3_2019_v21n4_455_t0014.png 이미지

Table 15. Stress comparison of steel pipe after 5 m excavation

TNTNB3_2019_v21n4_455_t0015.png 이미지

Table 16. Stress comparison of steel pipe after 6 m excavation

TNTNB3_2019_v21n4_455_t0016.png 이미지

References

  1. Bae, G.J., Kim, C.Y., Moon, H.D., Hong, S.W. (1997), "A study on the ground movement around tunnel reinforced by umbrella arch method", Tunnel and Underground Space, Vol. 7, No. 4, pp. 299-309.
  2. Barisone, G., Pigorini, B., Pelizza, S. (1982), "Umbrella arch method for tunnelling in difficult conditionsanalysis of Italian cases", Proceedings of the 4th Congress of International Association for Engineering Geology, Vol. 4, New Delhi, pp. 15-27.
  3. Cha, M. (2004), A numerical study on the behavior of steel pipes in umbrella arch method, Master Thesis, Graduate School of Hanyang University, pp. 2-9.
  4. Choi, Y.K., Kim, C.Y., Han, M.H., Hwang, C.H. (1997), "Application of umbrella arch method for tunneling in the soft ground", Journal of the Korean Geotechnical Society, Vol. 1997, No. 3, pp. 133-139.
  5. Harazaki, I., Aono, H., Matsuda, A., Aoki, T., Hakoishi, Y. (1998), "Field observation of large tunnel supported by umbrella method: Case of Maiko tunnel in Kobe, Japan", Proceedings of the World Tunnel Congress 98 on Tunnels and Metropolises, Vol. 2, Sao Paulo, pp. 1009-1014.
  6. Jang, S., Kyeon, S., Kim, K., Heo, D. (2002), "Reasonable advanced reinforcement design method for reinforcement of tunnel face", Magazine of Korean Tunnelling and Underground Space Association, Vol. 4, No. 3, pp. 6-13.
  7. KICT (2008), Establishment of selection technique and collapse site management plan for optimal response method of tunnel collapse type, Korea Institute of Civil Engineering and Building Technology, pp. 32-84.
  8. Kim, D.K., Im, J.C., Park, L.K., Sim, J.K. (2002), "Behavior of steel pipe used in UAM for the urban NATM tunnel excavation", Korean Society of Civil Engineering Congress, Vol. 2002, No. 11, Busan, pp. 3063-3066.
  9. Kim, D.K., Im, J.C., Park, L.K., Sim, J.K. (2003), "A study on the analysis of steel pipe behavior & suggestion of a design method for UAM used in urban NATM tunnel excavation", Proceedings of the Korean Society of Civil Engineering Conference, Daegu, pp. 4768-4773.
  10. Kim, H.T. (1995), Application of nonlinear 3-D tunnel analysis program for the improved effects of steel pipe reinforced multi step grouting method, Master Thesis, Graduate School of Dankook University, pp. 5-52.
  11. Kim, S.H. (2010), "The effects of stability of the tunnel reinforced by rebar steel pipe", Journal of Korean Tunnelling and Underground Space Association, Vol. 12, No. 5, pp. 389-397.
  12. Kim, S.H., Moon, H.K. (2002), "A study on the reinforcement effect of umbrella arch method and prediction of tunnel crown settlement", Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol. 39, No. 3, pp. 197-205.
  13. Oreste, P.P., Peila, D. (1998), "A new theory for steel pipe umbrella design in tunnelling", Proceedings of the World Tunnel Congress 98 on Tunnels and Metropolises, Vol. 2, Sao Paulo, pp. 1033-1039.
  14. Pelizza, S., Peila, D. (1993), "Soil and rock reinforcements in tunnelling", Tunnelling and Underground Space Technology, Vol. 8, No. 3, pp. 357-372. https://doi.org/10.1016/0886-7798(93)90020-V
  15. Rhee, J.W., Lee, J.S., Kim, M.K. (1996), "A study on the tunnel stability using grouting technique", Tunnel and Underground Space, Vol. 6, No. 4, pp. 298-305.
  16. Song, K.I., Cho, G.C. (2006), "Equivalent design parameter determination for effective numerical modeling of pre-reinforced zones in tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 8, No. 2, pp. 151-163.
  17. Yeo, Y., Baek, J., Choi, C., Yoon, K., Hwang, S. (2002), "Characteristics of TAS construction method and ground environment", Magazine of Korean Geotechical Society, Vol. 18, No. 3, pp. 8-17.
  18. Yoo, C.S., Shin, S.W., Kim, Y.J., Kim, Y.J. (1995), "Three-dimensional finite element analysis on tunnel behavior reinforced by umbrella arch method", Proceedings of the Korean Geotechnical Society Conference, Seoul, pp. 97-102.