DOI QR코드

DOI QR Code

Analysis of Progression Levels for Meta-modeling Knowledge of Science Gifted Students through Modeling

모델링을 통한 과학영재 학생들의 메타모델링 지식 발달 단계 분석

  • Received : 2019.01.28
  • Accepted : 2019.03.26
  • Published : 2019.06.30

Abstract

This study aims to explore meta-modeling knowledge of gifted students through the modeling. To do this, five gifted students were asked to do modeling related to candle burning, and all the processes of modeling were observed and then individual interviews were conducted. As a result of the study, two students were classified as first level and three students were classified as second level. The students of the first level did not have any model generation or model-based prediction activities, and observation was the most meaningful activity. On the other hand, the students of the second level performed all four modeling processes. However, the generation of the model and the prediction using the model were relatively strong. The data they gained from the experiments was perceived as just confirming the absolute model. No student was found in Level 3 or Level 4. The results of this study show that gifted students remain at the progression level of recognizing the model as an objective reality, and in order to cultivate a true scientist, it is necessary to educate the gifted students to recognize the subjectivity of the model.

이 연구에서는 모델링을 통해 드러난 학생의 과학 메타모델링 지식 발달 단계를 탐구하는데 목적이 있다. 이를 위해 5명의 영재학생들에게 양초연소와 관련된 모델링을 요구하였으며, 모델링의 모든 과정은 관찰되어지고 이후 개별 면담이 진행되었다. 연구결과, 2명의 학생이 1단계로 분류되었으며, 3명의 학생은 2단계로 분류되었다. 1단계 학생들은 모델의 생성, 모델을 이용한 예측 활동이 전혀 수행되지 않았으며, 그들에게는 관찰이 가장 의미가 있는 활동이었으며 이러한 관찰을 통해 모델을 생성하였다. 반면, 2단계의 학생들은 모델의 생성, 모델을 이용한 예측, 실험 수행 및 관찰, 예측과 자료의 비교를 모두 수행하였다. 하지만 모델의 생성과 이를 이용한 예측에서 상대적으로 강한 수행을 보였다. 그들은 실험에서 얻는 자료를 절대적인 모델을 확인하는 용도로만 인식하였다. 3, 4단계에 해당하는 학생은 관찰되지 않았다. 이러한 연구결과는 현재 영재학생들이 모델을 객관적 실체로 인식하는 단계에 머물러 있으며, 이들을 진정한 과학자로 양성하기 위해서는 영재학생들이 모델의 주관성을 인식할 수 있도록 돕는 교육이 필요함을 보여준다.

Keywords

GHGOBX_2019_v39n3_457_f0001.png 이미지

Figure 1. Scientific model of Giere(Giere et al., 2006)

GHGOBX_2019_v39n3_457_f0002.png 이미지

Figure 2. The characteristic of level 1 students’ modeling

GHGOBX_2019_v39n3_457_f0003.png 이미지

Figure 3. The characteristic of level 2 students’ modeling

Table 1. The research procedure

GHGOBX_2019_v39n3_457_t0001.png 이미지

Table 2. Progression levels of science meta-modeling knowledge(Kim, Kim, & Paik, 2019)

GHGOBX_2019_v39n3_457_t0002.png 이미지

Table 3. The modeling of student B

GHGOBX_2019_v39n3_457_t0003.png 이미지

Table 4. The modeling of student E

GHGOBX_2019_v39n3_457_t0004.png 이미지

Table 5. The modeling of student A

GHGOBX_2019_v39n3_457_t0005.png 이미지

Table 6. The modeling of student C

GHGOBX_2019_v39n3_457_t0006.png 이미지

Table 7. The modeling of student D

GHGOBX_2019_v39n3_457_t0007.png 이미지

References

  1. Alonzo, A. C., & Gotwals, A. W. (2012). Learning progressions in science: Current challenges and future directions. Springer Science & Business Media. Rotterdam: The Netherlands.
  2. Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). 'An experiment is when you try it and see if it works': a study of grade 7 students' understanding of the construction of scientific knowledge. International Journal of Science Education, 11(5), 514-529. https://doi.org/10.1080/0950069890110504
  3. Cho, E. J., Kim C. J., & Choe, S. U. (2017). An investigation into the secondary science teachers' perception on scientific models and modeling. Journal of the Korean Association for Science Education, 37(5), 859-877. https://doi.org/10.14697/jkase.2017.37.5.859
  4. Cho, H. S., Nam, J. H., & Oh, P. S. (2017). A review of model and modeling in science education: Focus on the metamodeling knowledge. Journal of the Korean Association for Science Education, 37(2), 239-252. https://doi.org/10.14697/jkase.2017.37.2.0239
  5. Clement, J. J. (2000). Model-based learning as a key research area of science education. International Journal of Science Education, 22(9), 1041-1053. https://doi.org/10.1080/095006900416901
  6. Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform. Philadelphia, PA: Consortium for Policy Research in Education.
  7. Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students' understandings of modern genetics across the 5th-10th grades. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(6), 655-674. https://doi.org/10.1002/tea.20312
  8. Giere, R. N., Bickle, J, & Mauldin, R. (2006). Understanding scientific reasoning. Thomson/Wadsworth.
  9. Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822. https://doi.org/10.1002/tea.3660280907
  10. Jeon, Y., & Choi, A. R. (2016). Analysis of inquiry activities in high school chemistry II textbooks based on the 2009 revised science curriculum: Focus on 8 science practices. Journal of Korea Chemical Society, 60(1), 59-68. https://doi.org/10.5012/jkcs.2016.60.1.59
  11. Justi, R., & Gilbert, J. K. (2002). Modeling, teachers' views on the nature of modeling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142
  12. Kim, H. K., & Song, J. W. (2003). Middle school students' ideas about the purposes of laboratory work. Journal of the Korean Association for Science Education, 23(3), 254-264.
  13. Kim, S. K., Choi, H., Park, C. Y., & Park, S. H. (2019). The chemistry teachers' perceptions and interpretations about three acid-base models. Journal of Korea Chemical Society, 63(1), 56-63. https://doi.org/10.5012/JKCS.2019.63.1.56
  14. Kim, S. K., Kim, J. E., & Paik, S. H. (2019). Exploring progression levels for science metamodeling knowledge of the science gifted. Journal of Korea Chemical Society, 63(2), 102-110. https://doi.org/10.5012/JKCS.2019.63.2.102
  15. Kim, S. K., Park, C. Y., Choi, H., & Paik, S. H. (2018). Evaluation of stated models for the floating and sinking phenomena in the chemical domain. Journal of the Korean Chemical Society, 62(3), 226-234. https://doi.org/10.5012/JKCS.2018.62.3.226
  16. Kousathana, M., Demerouti, M., & Tsaparlis, G. (2005). Instructional misconceptions in acid-base equilibria: An analysis from a history and philosophy of science perspective. Science & Education, 14(2), 173-193. https://doi.org/10.1007/s11191-005-5719-9
  17. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of research in science teaching, 29(4), 331-359. https://doi.org/10.1002/tea.3660290404
  18. Lederman, N. G. (2007). Nature of science: Past, present, and future. Handbook of research on science education, 2, 831-879
  19. Mislevy, R. J., Haertel, G., Riconscente, M., Rutstein, D. W., & Ziker, C. (2017). Evidence-centered assessment design. In Assessing Model-Based Reasoning using Evidence-Centered Design (pp. 19-24). Springer, Cham.
  20. Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. Morrison & M. S. Morgan (Eds.), Models as mediators (pp.10-37). Cambridge: Cambridge University Press.
  21. National Research Council(2013). The Next Generation Science Standards. National Academy Press: Washington, DC.
  22. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
  23. Park, H. K., Cho, J. R., Kim, C. J., Kim, H. B., Yoo, J. H., Jang S. H., & Choe, S. U. (2016). The change in modeling ability of science-gifted students through the co-construction of scientific model. Journal of the Korean Association for Science Education, 36(1), 15-28. https://doi.org/10.14697/jkase.2016.36.1.0015
  24. Rea-Ramirez, M. A., Clement, J., & Nunez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In Model based learning and instruction in science (pp. 23-43). The Netherlands: Springer Netherlands.
  25. Schwarz, C. V. (2002). Is there a connection? The role of meta-modeling knowledge in learning with models. In P. Bell, R. Stevens, & T. Satwicz (Eds.), Keeping learning complex: The proceedings of the fifth international conference of the learning sciences (ICLS). Mahwah, NJ: Erlbaum.
  26. Schwarz, C. V., & White B. Y. (2005). Metamodeling knowledge: developing students' understanding of scientific modeling, Cognition and Instruction, 23(2), 165-205. https://doi.org/10.1207/s1532690xci2302_1
  27. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  28. Somerville, R. C., & Hassol, S. J. (2011). The science of climate change. Physics Today, 64(10), 48. https://doi.org/10.1063/PT.3.1296
  29. Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi‐dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687-715. https://doi.org/10.1002/tea.20324

Cited by

  1. 2009·2015 개정 교육과정 화학 I 및 화학 II 교과서 및 교사용 지도서에 제시된 산·염기 모델 내용에 대한 '이그노런스' 분석 vol.64, pp.3, 2019, https://doi.org/10.5012/jkcs.2020.64.3.175