Fig. 1. Experimental process diagram for this research.
Fig. 2. Schematic diagram of experiments for this research.
Fig. 3. CO2 Loading curves in the absorption, desorption, and re-absorption for different simulated seawater solutions with 3 M MEA solution.
Fig. 5. SEM images for the metal carbonate salts precipitated in in simulated seawater with concentrations of (a) Natural, (b) 10 times, (c) 30 times, (d) 50 times concentrated.
Fig. 4. XRD peaks for the precipitated metal carbonate salt produced by carbonation reaction in simulated seawater with concentrations of (a) Natural, (b) 10 times, (c) 30 times, (d) 50 times concentrated.
Fig. 6. TGA analysis for the metal carbonate salts precipitated in simulated seawater with concentrations of (a) Natural, (b) 10 times, (c) 30 times, (d) 50 times concentrated.
Table 1. Concentration of metal cation and anion in natural and simulated seawater
Table 2. Amount of simulated seawater powder and for making solutions for these experiments and concentration of metal cation with simulated seawater solution
Table 3. CO2 loading values in first absorption and re-absorption step
Table 4. Solubility of sodium carbonate and sodium bicarbonate
Table 5. Conversion yield of converted carbon dioxide to precipitated metal carbonates
참고문헌
-
Rosa, C. M. and Adisa, A., "Carbon Capture, Storage and Utilisation Technologies: A Critical Analysis and Comparison of their Life Cycle Environmental Impacts," J. of
$CO_2$ Utilization, 9, 82-102(2015). https://doi.org/10.1016/j.jcou.2014.12.001 - Kang, D. W., Lee, M. G., Jo, H. Y., Yoo, Y. S., Lee, S. M. and Park, J. W., "Carbon Capture and Utilization Using Industrial Wastewater under Ambient Conditions," Chem. Eng. J., 308, 1073-1080(2017). https://doi.org/10.1016/j.cej.2016.09.120
- Marco, M., Ronny, P. and Giuseppe, S., "Enhanced Coal Bed Methane Recovery," J. Supercrit. Fluids, 47(3), 619-627(2009). https://doi.org/10.1016/j.supflu.2008.08.013
- Chen, J., Duan, L., Donat, F., Muller, C., Anthony, E. and Fan, M., "Self-activated, Nanostructured Composite for Improved CaL-CLC Technology," Chem. Eng. J., 351, 1038-1046(2018). https://doi.org/10.1016/j.cej.2018.06.176
-
Lee, S., Kim, J. W., Chan, S., Bang, J. H. and Lee, S. W., "
$CO_2$ Sequestration Technology Through Mineral Carbonation: An Extraction and Carbonation of Blast Slag," J. of$CO_2$ Utilization, 16, 336-345(2016). https://doi.org/10.1016/j.jcou.2016.09.003 - Park, S. Y., Seo, J. S. and Kim, T. Y., "Environmental Impacts of Brine from the Seawater Desalination Plants," J. Environ. Impact Assess, 27(1), 17-32(2018). https://doi.org/10.14249/eia.2018.27.1.17
- Kang, D. W., Lee, M. G., Jo, H. Y. and Park, J. W., "Carbon Dioxide Utilization Using a Pretreated Brine Solution at Normal Temperature and Pressure," Chem. Eng. J., 286, 1270-1278(2016).
- Kim, I. and Svendsen, H. F., "Heat of Absorption of Carbon Dioxide in Monoethanolamine (MEA) and 2-(Aminoethyl)ethanolamine (AEEA) Solutions," Ind. Eng. Chem. Res., 46(17), 5803-5809(2007). https://doi.org/10.1021/ie0616489
- David, T. W. and David, W., "Precipitation of Dolomite Using Sulphate-Reducing Bacteria from the Coorong Region, South Australia: Significance and Implications," Sedimentology, 52(5), 987-1008(2005). https://doi.org/10.1111/j.1365-3091.2005.00732.x
- Dash, S., Kamruddin, M., Ajikumar, K., Tyagi, A. K. and Raj, B., "Nanocrystalline and Metastable Phase Formation in Vaccum Thermal Decomposition of Calcium Carbonate," Thermochimi. Acta, 363(1-2), 129-135(2000). https://doi.org/10.1016/S0040-6031(00)00604-3
- Loste, E., Wilson, R. M., Sechadri, R. and Meldrum, F. C., "The Role of Magnesium in Stabilising Amorphous Calcium Carbonate and Controlling Calcite Morphologies," J. Cryst. Growth, 254(1-2), 206-218(2003). https://doi.org/10.1016/S0022-0248(03)01153-9
-
De Chouden-Sa Nchez, V. and Gonzalez, L. A., "Calcite and Aragonite Precipitation Under Controlled Instantaneous Supersaturation: Elucidating the Role of
$CaCO_3$ Saturation State and Mg/Ca Ratio on Calcium Carbonate Polymorphism," J. Sediment. Res., 79(6), 363-376(2009). https://doi.org/10.2110/jsr.2009.043 - Mcintosh, R. M., Sharp, J. H. and Wilburn, F. W., "The Thermal Decomposition of Dolomite," Thermochimi. Acta, 165(2), 281- 296(1990). https://doi.org/10.1016/0040-6031(90)80228-Q
- Rodirguez-Blanco, J., Shaw, S., Bots, P., Roncal-Herrero, T. and Benning, L. G., "The Role of Mg in the Crystallization of Monohydrocalcite," Geochim. Cosmochim. Acta, 127, 204-220(2014). https://doi.org/10.1016/j.gca.2013.11.034
- Basfar, A. A. and Bad, H. J., "Influence of Magnesium Hydroide and Huntite Hydromagnesite on Mechanical Properties of Ethylene Vinyl Acetate Compounds Cross-Linked by DiCumyl Peroxide and Ionizing Radiation," J. Fire Sci., 28(2), 161-180(2010). https://doi.org/10.1177/0734904109340765
-
Marion, G. M., "Carbonate Mineral Solubility at Low Temperatures in the
$Na-K-Mg-Ca-H-Cl-SO_4-OH-HCO_3-CO_3-CO_2-H_2O$ System," Geochim. Cosmochim. Acta, 65(12), 1883-1896(2001). https://doi.org/10.1016/S0016-7037(00)00588-3 - Davies, P. J. and Bubela, B., "The Transformation of Nesquehonite into Hydromagnesite," Chem. Geol., 12(4), 289-300(1973). https://doi.org/10.1016/0009-2541(73)90006-5
- Hollingbery, L. A. and Hull, T. R., "The Thermal Decomposition of Huntite and Hydromagnesite - a Review," Thermochim. Acta, 509(1-2), 1-11(2010). https://doi.org/10.1016/j.tca.2010.06.012
- Chaiwang, P., Chalermsinsuwan, B. and Piumsomboon, P., "Thermogravimetric Analysis and Chemical Kinetics for Regeneration of Sodium and Potassium Carbonate Solid Sorbents," Chem. Eng. Commun., 203(5), 581-588(2016). https://doi.org/10.1080/00986445.2015.1078796