DOI QR코드

DOI QR Code

Comparison and discussion of water supply and demand forecasts considering spatial resolution in the Han-river basin

분석단위 세분화에 따른 한강권역의 물수급 분석 비교 및 고찰

  • Oh, Ji-Hwan (Water Resources Research Center, K-water Research Institute) ;
  • Kim, Yeon-Su (Water Resources Research Center, K-water Research Institute) ;
  • Ryu, Kyong Sik (Water Resources Research Center, K-water Research Institute) ;
  • Bae, Yeong Dae (Water Supply and Demand Prediction Center, K-water)
  • 오지환 (K-water 연구원 물순환연구소) ;
  • 김연수 (K-water 연구원 물순환연구소) ;
  • 류경식 (K-water 연구원 물순환연구소) ;
  • 배영대 (한국수자원공사 물수요공급예측센터)
  • Received : 2019.06.03
  • Accepted : 2019.07.16
  • Published : 2019.07.31

Abstract

Our country is making efforts to manage water resources efficiently. In the future, It is necessary to develop a plan after subdividing the basin considering regional problems and water use, topographical and climatic characteristics. This study constructed water supply and demand system based on the standard watershed unit for water shortage evaluation considering spatial resolution. In addition, water shortage were calculated and compared using the MODSIM model in the Han-river basin. As a result, the average water shortage occurring during the 49 years (1967-2015) was 129.98 million $m^3$ for the middle watershed unit and 222.24 million $m^3$ for the standard watershed unit, resulting in a difference of about 2.1 billion m3. However, the trends and distribution of water shortage occurrence were very similar. The reason for this is that, in the case of the Middle watershed unit analysis, water shortages are calculated for the demand for living, industrial, and agricultural water for the representative natural flow value, assuming that all the water can be used in basin. The standard basin unit analysis showed that the difference between the fractionated supply and demand resulted in a large water shortage due to the relatively small amount of available water, and that the main stream did not show water shortage due to the ripple effect of the return flow. If the actual water use system is considered in the model as well as the subdivision of the spatial unit, it will be possible to evaluate the water supply and demand reflecting the regional characteristics.

우리나라는 효율적인 수자원 관리를 위해 노력하고 있으며, 향후 지역의 문제와 물이용 현황, 특성, 지형, 기후 등을 고려한 유역을 세분화한 후 계획을 수립하는 것이 필요하다. 이에 본 연구에서는 한강 권역을 대상으로 MODSIM 모형을 활용하여 중권역과 표준유역단위 물 수급 체계를 구축하고 분석 결과를 비교하였다. 분석 결과, 49개년(1967-2015)간 발생하는 평균 물 부족량은 중권역 단위 129.98 백만$m^3$, 표준유역단위 2,229.24 백만 $m^3$으로 약 21 억$m^3$ 가량의 차이가 나타났으나 물 부족이 발생하는 시기와 물 부족 발생 공간 분포에 대한 경향은 매우 유사하게 나타났다. 이러한 원인은 중권역 단위 분석의 경우, 모든 수량을 이용할 수 있다는 가정으로 대표 자연유량 값에 대한 생활, 공업, 농업용수 수요량에 대한 물 부족량이 산정된다. 그러나, 표준유역단위 분석에서는 분할된 공급량과 수요량의 차이로 인해 본류와 이격되어 있는 지류는 가용할 수 있는 수자원량이 상대적으로 작아져 물 부족이 크게 발생하는 것으로 나타났고, 본류는 오히려 회귀수량의 파급효과로 인해 물 부족이 나타나지 않는 것으로 분석되었다. 향후, 분석 단위의 세분화 뿐만 아니라 실제 물이용체계가 모형 내 고려된다면 지역적 특성이 반영된 물수급 평가가 가능할 것으로 판단된다.

Keywords

SJOHCI_2019_v52n7_505_f0001.png 이미지

Fig. 1. Conceptual diagram for comparison and evaluation

SJOHCI_2019_v52n7_505_f0002.png 이미지

Fig. 2. Study area and basin map in the Han-river

SJOHCI_2019_v52n7_505_f0003.png 이미지

Fig. 3. Water demands and average water inflow of Middle watershed unit

SJOHCI_2019_v52n7_505_f0004.png 이미지

Fig. 4. Problems of diversion water supply by spatial resolution

SJOHCI_2019_v52n7_505_f0005.png 이미지

Fig. 5. Construction of MODSIM model considering spatial resolution

SJOHCI_2019_v52n7_505_f0006.png 이미지

Fig. 6. Flow chart of study procedure

SJOHCI_2019_v52n7_505_f0007.png 이미지

Fig. 7. Total water shortage by year

SJOHCI_2019_v52n7_505_f0008.png 이미지

Fig. 8. Spatial distribution of water shortage by 2015year

SJOHCI_2019_v52n7_505_f0009.png 이미지

Fig. 9. Water shortage results of Han-river seoul basin

SJOHCI_2019_v52n7_505_f0010.png 이미지

Fig. 10. Water shortage results of Si-hwa reservoir basin

SJOHCI_2019_v52n7_505_f0011.png 이미지

Fig. 11. Water demand by type in the 1202 watershed

SJOHCI_2019_v52n7_505_f0012.png 이미지

Fig. 12. Examples for improvement plan

Table 1. Comparison of water shortage by 2015year

SJOHCI_2019_v52n7_505_t0001.png 이미지

Table 2. Water demands of Si-hwa reservoir basin (unit : million ㎥)

SJOHCI_2019_v52n7_505_t0002.png 이미지

References

  1. Ahn, S. R., Park, G. A., and Kim, S. J. (2013). "Assessment of agricultural water supply capacity using MODSIM-DSS coupled with SWAT." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 2, pp. 507-519. https://doi.org/10.12652/Ksce.2013.33.2.507
  2. Ahn, S. R., Park, G. A., Shin, Y. H., and Kim, S. J. (2009). "Assessment of the potential water supply rate of agricultural irrigation facilities using MODSIM - for Geum river basin -." Journal of Korea Water Resources Association, Vol. 42, No. 10, pp. 825-843. https://doi.org/10.3741/JKWRA.2009.42.10.825
  3. ARCROM (2016). Guideline report for securing river flow by flexible evaluation. GR-2016-10.
  4. Cha, K. U., Cheong, T. S., and Ko, I. H. (2007). "Validation of the surface-ground waters interaction and water supplying to upper region of Geum river basin by optimal method for drought season." Journal of the Korean Society of Civil Engineers, Vol. 27, No. 5B, pp. 507-513.
  5. Cheong, T. S., Kang, S. U., Ko, I. H., and Hwang, M. H. (2007). "Development and validation of KModSim for the decision support system in Geum river basin." Journal of the Korean Society of Civil Engineers, Vol. 27, No. 3B, pp. 319-329.
  6. Choi, S. J., Kang, S. K., Lee, D. R., and Kim, J. H. (2018). "A study on water supply and demand prospects for water resources planning." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 7, pp. 589-593. https://doi.org/10.9798/KOSHAM.2018.18.7.589
  7. Kim, H. S., Maeng, S. J., Jeon, K. S., Kim, D. J., and Kim, H. S. (2016). "A water balance analysis for assessing water demand and supply in administrative districts." Crisisonomy, Vol. 12, No. 4, pp. 153-166.
  8. Ko, I. H., and Park, S. K. (2003). Analysis of river-basin water resources system using MODSIM. 11th Water Engineering Workshop.
  9. Korea Ministry of Government Legislation (2018). Korea, accessed 12 December 2018, .
  10. K-water (2008). A study on the basic plan for water management. 11-B500001-000091-01, p. 246.
  11. Lee, D. R., and Choi, S. J. (2011), "introduction of integrated water resources assessment planning model -K-WEAP (Korea-water evaluation and planning system)." Water for future, Vol. 44, No. 9, pp. 117-123.
  12. Ministry of Land, Infrastructure and Transport (MOLIT) (2016). National water resources plan (2011-2020)(3rd rev.).
  13. No, S. H., Jung, K. S., Park, J. H., and Ryoo, K. S. (2013). "Water supply change outlook for Geum river basin considering RCP climate change scenario." Journal of Korea Water Resources Association, Vol. 46, No. 5, pp. 505-517. https://doi.org/10.3741/JKWRA.2013.46.5.505
  14. Oh, J. H., Kim, Y. S., Ryu, K. S., and Jo, Y. S. (2019). "comparison and discussion of MODSIM and K-WEAP model considering water supply priority." Journal of Korea Water Resources Association, Vol. 52, No. 7, pp. 463-473. https://doi.org/10.3741/JKWRA.2019.52.7.463
  15. Water Resources Management Information System (WAMIS) (2019). Korea, accessed 27 May 2019, .
  16. Yoo, J. H. (2005). "Suggestion of the water budget analysis method by MODSIM for the assessment of the water supply reliability." Journal of the Korean Society of Civil Engineers, Vol. 25, No. 1B, pp. 9-17.
  17. Yoo, J. H., Yoon, S. Y., and Kim, S. (2000). "Water budget analysis in consideration of supply priorities." Proceedings of Korean Society of Civil Engineers, pp. 449-452.