DOI QR코드

DOI QR Code

The Design, Implementation, and Evaluation of a User-Level Mobile Ad Hoc Network Routing with COTS Devices

사용자 계층 모바일 애드혹 라우팅 네트워크 설계와 실제 환경에서의 성능 검증

  • Received : 2019.06.07
  • Accepted : 2019.06.23
  • Published : 2019.07.31

Abstract

We design, implement, and evaluate a user-level ad hoc network routing protocol on the COTS (commercial off-the-shelf) mobile devices. In situations such as disaster recovery, emergency communication between mobile devices is necessary. For wide deployability and usability of such a system, we design and implement the networking protocols on the user level instead of modifying the kernel of mobile devices. In order to support reliable data transfer in high mobility scenarios, we selected to implement AODV (Ad Hoc On-Demand Distance Vector) as the routing protocol and TCP as the transport layer protocol. With our implementation of ad hoc networking stack on COTS smartphones, we conducted experiments in various networking environments. Our experimental results show that ad hoc networking is possible in up to 12 hops in a line topology and 5 concurrent devices in a star topology.

본 논문에서는 애드혹 라우팅 네트워크를 다양한 사용자 모바일 기기에서 사용하기 위한 설계 방법을 소개하고, 이를 모바일 기기에 직접 구현하여 실제 환경에서 어떻게 작동하는지 성능을 관찰하고 검증하였다. 상용 사용자 모바일 기기에서의 애드혹 라우팅 네트워크의 사용성을 고려해 커널을 수정하지 않고 사용자 계층에서 구현하는 디자인을 선택하였다. 또한 이동성이 높은 환경에서 적절히 사용하기 위해 기존 애드혹 라우팅 네트워크들을 분석하였으며 그 결과 사용자 계층에서 AODV (ad-hoc on-demand distance vector) 프로토콜과 TCP를 구현하였다. 모바일 기기들이 일렬로 놓여 있는 환경과 중앙 노드가 주변 노드 여러 대와 통신하는 환경에서 실험을 진행하였고, 그 결과 일렬로 놓인 환경에서 최대 12 홉, 중앙 노드와 주변 노드가 통신하는 환경에서 최대 5 개의 노드와 통신하는 것을 확인하였다.

Keywords

HOJBC0_2019_v23n7_845_f0001.png 이미지

Fig. 1 System design overview

HOJBC0_2019_v23n7_845_f0002.png 이미지

Fig. 2 Experiment to evaluate routing performance

HOJBC0_2019_v23n7_845_f0003.png 이미지

Fig. 3 Linear topology

HOJBC0_2019_v23n7_845_f0004.png 이미지

Fig. 4 Throughput of linear topology based on the number of hops

HOJBC0_2019_v23n7_845_f0005.png 이미지

Fig. 5 Star topology

HOJBC0_2019_v23n7_845_f0006.png 이미지

Fig. 6 Throughput of child nodes in star topology

HOJBC0_2019_v23n7_845_f0007.png 이미지

Fig. 7 Experiment with mobile sender

References

  1. S. Rosati, K. Kruzelecki, G. Heitz, D. Floreano, and B. Rimoldi, "Dynamic routing for flying ad hoc networks," IEEE Transactions on Vehicular Technology, 65(3), 1690-700, (2015). https://doi.org/10.1109/TVT.2015.2414819
  2. M. H. Tareque, M. S. Hossain, and M. Atiquzzaman, "On the routing in flying ad hoc networks," 2015 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2015.
  3. Z. Zheng, A. K. Sangaiah, and T. Wang, "Adaptive communication protocols in flying ad hoc network," IEEE Communications Magazine, 56(1), 136-142, (2018).
  4. P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot, "Optimized link state routing protocol for ad hoc networks," in Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century. Proceedings. IEEE International, pp.62-68, 2001.
  5. C. Perkins, and P. Bhagwat, "Highly Dynamic Destination- Sequenced Distance-Vector Routing (DSDV) for Mobile Computers," Proceedings of ACM SIGCOMM'94, London, UK, pp. 234-244, 1994.
  6. V. D. Park, and M. S. Corson, "A highly adaptive distributed routing algorithm for mobile wireless networks," Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Driving the Information Revolution., Proceedings IEEE, pp.1405-1413, vol. 3, 7-12, Apr. 1997.
  7. S. J. Lee, M. Gerla, and C. K. Toh, "A simulation study of table-driven and on-demand routing protocols for mobile ad hoc networks," in Network, IEEE, vol.13, no.4, pp.48-54, Jul/Aug. 1999.
  8. C. Perkins, and E. Royer, "Ad-hoc on-demand distance vector routing," in Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA '99. Second IEEE Workshop, pp.90-100, 25-26, Feb. 1999.
  9. C. Perkins, E. Belding-Royer, and S. Das, Ad hoc on-demand distance vector (AODV) routing. RFC 3561. 2003.
  10. D.B. Johnson, and D.A. Maltz, "Dynamic Source Routing in Ad Hoc Wireless Networks," In Mobile Computing, edited by Tomasz Imielinski and Hank Korth, Chapter 5, pages 153-181, Kluwer Academic Publishers, 1996.
  11. J. Thomas, J. Robble, and N. Modly. "Off Grid communications with Android." IEEE Conference on Technologies for Homeland Security (HST). 2012.
  12. Z. Lu, G. Cao, T. L. Porta, "Networking smartphones for disaster recovery," 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, 2016.
  13. E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park, "mTCP: a Highly Scalable User-level {TCP} Stack for Multicore Systems," In 11th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 14) (pp. 489-502).
  14. M. Ahuja, and A. Shafiqul, "Performance Analysis of Vehicular Ad-hoc Network." International Journal of Computer Applications, 151.7 (2016).
  15. R. R. Chandan, B. S. Kushwaha, and P. K. Mishra, "Performance Evaluation of AODV, DSDV, OLSR Routing Protocols using NS-3 Simulator," International Journal of Computer Network and Information Security 10.7 (2018): 59. https://doi.org/10.5815/ijcnis.2018.07.07
  16. A. Kaur, and A. K. Gupta. "Performance Evaluation of AODV and DSDV using NS-3," International Journal of Innovations in Engineering and Technology, 6 (2016): 560-563.