DOI QR코드

DOI QR Code

The Tunneling Effect at Semiconductor Interfaces by Hall Measurement

홀측정을 이용한 ZTO 반도체 박막계면에서의 터널링 효과

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2019.06.07
  • Accepted : 2019.06.26
  • Published : 2019.07.27

Abstract

ZTO/n-Si thin film is produced to investigate tunneling phenomena by interface characteristics by the depletion layer. For diversity of the depletion layer, the thin film of ZTO is heat treated after deposition, and the gpolarization is found to change depending on the heat treatment temperature and capacitance. The higher the heat treatment temperature is, the higher the capacitance is, because more charges are formed, the highest at $150^{\circ}C$. The capacitance decreases at $200^{\circ}C$ ZTO heat treated at $150^{\circ}C$ shows tunneling phenomena, with low non-resistance and reduced charge concentration. When the carrier concentration is low and the resistance is low, the depletion layer has an increased potential barrier, which results in a tunneling phenomenon, which results in an increase in current. However, the ZTO thin film with high charge or high resistance shows a Schottky junction feature. The reason for the great capacitance increase is the increased current due to tunneling in the depletion layer.

Keywords

References

  1. T. Oh, Jpn. J. Appl. Phys., 45, 264 (2006) https://doi.org/10.1143/JJAP.45.264
  2. A. Suresh and J. F. Muth, Appl. Phys. Lett., 92, 033502 (2008). https://doi.org/10.1063/1.2824758
  3. T. Oh, Korean J. Mater. Res., 25, 1149 (2015).
  4. F. Liu, Y. Zhou, Y. Wang, X. Liu, J. Wang and H. Guo, Quantum Mater., 1, 16004 (2016). https://doi.org/10.1038/npjquantmats.2016.4
  5. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wub, Solid-State Electron., 54, 1497 (2010). https://doi.org/10.1016/j.sse.2010.08.001
  6. S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008). https://doi.org/10.1063/1.2989125
  7. Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc., 123, 199 (1976). https://doi.org/10.1149/1.2133010
  8. T. Oh, Electron. Mater. Lett., 11, 853 (2015). https://doi.org/10.1007/s13391-015-4505-3
  9. J. Maserjian, J. Vac. Sci. Technol., 11, 996 (1974). https://doi.org/10.1116/1.1318719
  10. J. Maserjian and N. Zamani, Appl. Phys. Lett., 53, 559 (1982). https://doi.org/10.1063/1.99856
  11. C. S. Han and S. W. Kim, Korean J. Mater. Res., 28, 12 (2018). https://doi.org/10.3740/MRSK.2018.28.1.12
  12. M. A. Paranjape, A. U. Mane, A. K. Raychaudhuri, K. Shalini, S. A. Shivashankar, B. R. Chakravarty, Thin Solid Films, 413, 8 (2002). https://doi.org/10.1016/S0040-6090(02)00446-7