References
- Giri TK, Thakur A, Alexander A, Badwaik H, Tripathi DK. 2012. Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm. Sin. B. 2: 439-449. https://doi.org/10.1016/j.apsb.2012.07.004
- Lee Y-H, Chang J-J, Yang M-C, Chien C-T, Lai W-F. 2012. Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohydr. Polym. 88: 809-819. https://doi.org/10.1016/j.carbpol.2011.12.045
- Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, et al. 2007. Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J. Biomed. Mater. Res. A. 81: 373-380.
- Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, et al. 2012. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 109: 9287-9292. https://doi.org/10.1073/pnas.1202636109
-
Salick DA, Kretsinger JK, Pochan DJ, Schneider JP. 2007. Inherent antibacterial activity of a peptide-based
$\beta$ -hairpin hydrogel. J. Am. Chem. Soc. 129: 14793-14799. https://doi.org/10.1021/ja076300z - Thomas V, Yallapu MM, Sreedhar B, Bajpai S. 2007. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J. Colloid Interface Sci. 315: 389-395. https://doi.org/10.1016/j.jcis.2007.06.068
-
Murakami S, Aoki N, Matsumura S. 2011. Bio-based biodegradable hydrogels prepared by crosslinking of microbial poly(
$\gamma$ -glutamic acid) with L-lysine in aqueous solution. Nat. Polymer J. 43: 414-420. https://doi.org/10.1038/pj.2010.142 -
Lee E-H, Kamigaito Y, Tsujimoto T, Seki S, Uyama H, Tagawa S, et al. 2010. Preparation of Poly (
$\gamma$ -glutamic acid) hydrogel/apatite composites and their application for scaffold of cell proliferation. J. Fiber Sci. Technol. 66: 104-111. -
Chung S, Gentilini C, Callanan A, Hedegaard M, Hassing S, Stevens MM. 2013. Responsive poly (
$\gamma$ -glutamic acid) fibres for biomedical applications. J. Mater. Chem. B. 1: 1397-1401. https://doi.org/10.1039/c3tb00515a -
Valliant EM, Romer F, Wang D, McPhail DS, Smith ME, Hanna JV, et al. 2013. Bioactivity in silica/poly (
$\gamma$ -glutamic acid) sol-gel hybrids through calcium chelation. Acta Biomater. 9: 7662-7671. https://doi.org/10.1016/j.actbio.2013.04.037 -
Garcia JPD, Hsieh M-F, Doma BT, Peruelo DC, Chen I-H, Lee H-M. 2013. Synthesis of gelatin-
$\gamma$ -polyglutamic acid-based hydrogel for the in vitro controlled release of epigallocatechin gallate (EGCG) from Camellia sinensis. Polymers 6: 39-58. https://doi.org/10.3390/polym6010039 - Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. 2005. Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem. Rec. 5: 352-366. https://doi.org/10.1002/tcr.20061
-
Poo H, Park C, Kwak MS, Choi DY, Hong SP, Lee IH, et al. 2010. New biological functions and applications of high-molecular-mass Poly-
$\gamma$ -glutamic acid. Chem. Biodivers. 7: 1555-1562. https://doi.org/10.1002/cbdv.200900283 -
Ho GH, Ho TI, Hsieh KH, Su YC, Lin PY, Yang J, et al. 2006.
$\gamma$ -Polyglutamic acid produced by Bacillus subtilis (Natto): structural characteristics, chemical properties and biological functionalities. J. Chin. Chem. Soc. 53: 1363-1384. https://doi.org/10.1002/jccs.200600182 -
Li Z, He G, Hua J, Wu M, Guo W, Gong J, et al. 2017. Preparation of
$\gamma$ -PGA hydrogels and swelling behaviors in salt solutions with different ionic valence numbers. RSC Adv. 7: 11085-11093. https://doi.org/10.1039/C6RA26419K -
Choi S-H, Whang K-S, Park J-S, Choi W-Y, Yoon M-H. 2005. Preparation and swelling c harac teristic s of hydrogel from microbial poly (
$\gamma$ -glutamic acid) by$\gamma$ -irradiation. Macromol. Res. 13: 339-343. https://doi.org/10.1007/BF03218463 - Uchida R, Sato T, Tanigawa H, Uno K. 2003. Azulene incorporation and release by hydrogel containing methacrylamide propyltrimenthylammonium chloride, and its application to soft contact lens. J. Control. Release 92: 259-264. https://doi.org/10.1016/S0168-3659(03)00368-7
- Baker JP, Blanch HW, Prausnitz JM. 1995. Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory. Polymer 36: 1061-1069. https://doi.org/10.1016/0032-3861(95)93608-O
- Zhang X, Colon LA. 2006. Evaluation of poly {-N-isopropylacrylamide-co-[3-(methacryloylamino) propyl] trimethylammonium} as a stationary phase for capillary electrochromatography. Electrophoresis 27: 1060-1068. https://doi.org/10.1002/elps.200500588
- Aleksey V. Kurdyumov, Dale G. Swan, et al. 2017. Photoactivatable Crosslinker. U.S. Patent No. 20170022375A1. Surmodies, Inc., Eden Prairie, MN, U.S
- Shiladitya SENGUPTA, Suresh Rameshlal CHAWRAI, Shamik GHOSH, Sumana GHOSH, Nilu JAIN, Suresh SADHASIVAM, et al. 2018. Treatments for Resistant Acne. U.S. Patent No. 20160346294A1. IN. New Delhi: Vyome Therapeutics Ltd.
- Dong Wang, Scott C. Miller, et al. 2005. Water-soluble polymeric bone-targeting drug delivery system. U.S. Patent No. 20050287114A1. University of Utah Research Foundation.
- Espinosa-Andrews H, Enriquez-Ramirez KE, Garcia-Marquez E, Ramirez-Santiago C, Lobato-Calleros C, Vernon-Carter J. 2013. Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes. Carbohydr. Polym. 95: 161-166. https://doi.org/10.1016/j.carbpol.2013.02.053
- Gopinathan J, Noh I. 2018. Recent trends in bioinks for 3D printing. Biomater. Res. 22: 11. https://doi.org/10.1186/s40824-018-0122-1
- Ahn J-I, Kuffova L, Merrett K, Mitra D, Forrester JV, Li F, et al. 2013. Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater. 9: 7796-7805. https://doi.org/10.1016/j.actbio.2013.04.014
- Arakaki K, Kitamura N, Fujiki H, Kurokawa T, Iwamoto M, Ueno M, et al. 2010. Artificial cartilage made from a novel double-network hydrogel: in vivo effects on the normal cartilage and ex vivo evaluation of the friction property. J. Biomed. Mater. Res. A. 93: 1160-1168.
Cited by
- Biomedical Applications of Bacteria-Derived Polymers vol.13, pp.7, 2021, https://doi.org/10.3390/polym13071081
- From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications vol.11, pp.6, 2019, https://doi.org/10.3390/nano11061492