DOI QR코드

DOI QR Code

중·고령자 사회참여 변화 유형화와 결정요인에 관한 연구

A study on the Typology and Determinants for Changes in the Social Participation of Middle-aged and Older Population

  • 이민욱 (중앙대학교 사회복지대학원) ;
  • 정규형 (연세대학교 사회복지대학원 BK21플러스사업단)
  • 투고 : 2019.04.30
  • 심사 : 2019.07.20
  • 발행 : 2019.07.28

초록

본 연구는 중 고령자의 사회참여 변화를 유형화 하고 각 변화에 대한 결정요인을 탐색하는 데 목적이 있다. 분석자료는 한국 고령화연구패널조사 1차(2006)부터 6차(2016)년까지의 자료를 활용하였고, 분석 대상은 패널조사의 응답자 중 남성 1,327명, 여성 1,520명인 총 2,847명이었다. SPSS 22.0, M-plus 8.0 통계 프로그램을 통해 성장혼합 모형을 실시한 결과, 중 고령자의 사회참여 변화는 '고수준 감소형', '중수준 증가형', '저수준 유지형'으로 유형화 되었다. 각 유형에 대한 결정요인을 분석한 결과, 교육수준이 높을수록 저수준 유지형보다 고수준 감소형과 중수준 증가형에 속할 확률이 높으며, 도시지역에 거주할수록 저수준 유지형보다 고수준 감소형에 속할 가능성이 높은 것으로 확인되었다. 또한 직업이 없을수록 저수준 유지형보다 중수준 증가형에 속할 확률이 높은 것으로 확인되었다. 이러한 분석 결과를 통해 중 고령자 사회참여 촉진에 관한 함의점을 논의하였다.

This study is aimed at offering a typology of changes in the social participation of middle-aged and older population and explore determinants for each type of such changes. The data employed for analysis are the 1st survey (2006) through the 6th version (2016) of the Korea Aging Research Panel Survey. Among the respondents of the panel survey, 1,327 males and 1,520 females with a total of 2,847 respondents were analyzed. As a result of applying the growth mixture modelling through the SPS 22.0 and M-plus 8.0 statistical programs, the changes in the social participation of middle-aged and older population have been classified into the 'high-decreasing', 'moderate-increasing' and 'low-stable' trajectory classes. Analysis of the determinants for each class shows that higher the education level, the more likely they are to belong to the high-decreasing and moderate-increasing classes than the low-stable class, and the more the population lives in urban areas, the more likely they are to belong to high-decreasing trajectory class than to low-stable class. Also, it was found that the probability of belonging to moderate-increasing trajectory class was higher than that of the low-stable class when there was no occupation. Through the results of these analyses, the implications of promoting social participation of middle-aged and older population were discussed.

키워드

OHHGBW_2019_v10n7_243_f0001.png 이미지

Fig 1. Typology for Changes in the Social Participation

Table 1. Demographic Characteristics

OHHGBW_2019_v10n7_243_t0001.png 이미지

Table 2. Descriptive Statistics

OHHGBW_2019_v10n7_243_t0002.png 이미지

Table 3. Model fit of Growth Mixture Modeling

OHHGBW_2019_v10n7_243_t0003.png 이미지

Table 4. Multinomial logistic regression model of types of change in social participation

OHHGBW_2019_v10n7_243_t0004.png 이미지

참고문헌

  1. Korean Statistical Information Service. (2018). life table. KCIS [Online]. http://kostat.go.kr
  2. The Korean Geriatrics Society. (2018). Geriatrics Fact Sheet. Seoul: The Korean Geriatrics Society.
  3. M. I. Kim, H. R. Shin. (2013). Influence of Depression of the Elderly on Suicidal Ideation - Focused on the Moderating Effect of Social Participation and Preparation for Aging -. Seoul Studies, 14(4), 185-201.
  4. J. W. Rowe & R. L. Kahn. (1997). Successful aging. The Gerontologist, 37(4), 433-440. DOI: http://dx.doi.org/10.1093/geront/37.4.433
  5. G. H. Kim & J. Y. Woo. (2012). The Effect of Family Support and Internal-External Control on Elderly People Social Participation. Journal of Rehabilitation Psychology, 19(2), 317-335.
  6. B. S. Yoo, J. E. Lee & D. B. Kim. (2012). Health Inequalities among the Elderly: Mediation Effect of Social Participation Between Educational Level Inequalities and Self-rated Health,Depression. Korean Journal of Social Welfare Studies, 43(1), 117-142. https://doi.org/10.16999/kasws.2012.43.1.117
  7. J. K. Lee & B. R. Lee. (2016). Comparison of the effects of economic and social participations on the life satisfaction of old adults. Journal of Welfare for the Aged Institute, 71(2), 351-377.
  8. S. H. Lee & M. S. Suk. (2015). Effects of social participation activities on successful aging of elderly : The Mediating Effects of Verification ego-resilience. The Korea Academia-Industrial cooperation Society, 16(11), 8012-8020. https://doi.org/10.5762/KAIS.2015.16.11.8012
  9. K. H. Chung. (2018). 017 Survey on the Living Conditions of Older Persons, Sejong : Korea Institute for Health and Social Affairs.
  10. W. G. Heo. (2017). A Study on the Participation in Social Activities of the Elderly and the Developmental Trajectories of Depression. Social Science Research Reviw, 33(2), 183-206. https://doi.org/10.18859/ssrr.2017.05.33.2.183
  11. H. J. Lee. (2015). Social Activity Participation and Congnitive Function in Middle and Older Adults : A Longitudinal Study on the Reciprocal Relationship. Mental Health & Social Work, 43(1) 138-167.
  12. H. Akaike. (1987). Factor analysis and AIC. Psychometrika, 52(3), 317-332. https://doi.org/10.1007/BF02294359
  13. G. Schwarz. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136
  14. S. L. Sclove. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333-343. https://doi.org/10.1007/BF02294360
  15. K. Jeddi, V. Ramaswamy, & W. S. DeSarbo. (1993). A maximum Likelihood method for latent class regression involving a censored dependent variable. Psychometrika, 58(3), 375-394. https://doi.org/10.1007/BF02294647
  16. Y. Lo, N. R. Mendell., & D. B. Rubin. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767-778. https://doi.org/10.1093/biomet/88.3.767
  17. T. Jung, & K. A. S. Wickrama. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2(1), 302-317. https://doi.org/10.1111/j.1751-9004.2007.00054.x
  18. T. Burchardt. (2008). Time and income poverty. London : Centre for Analysis of Social Exclusion.