Fig. 1. FT-IR spectra of lignins.
Fig. 3. Chromatograms of non-isothermal pyrolysis of lignins.
Fig. 2. (a) TG and (b) DTG curves of H lignin and P lignin.
Table 1. Ultimate and proximate analysis of H lignin and P lignin
Table 2. Molecular weight and poly dispersity of lignins.
Table 3. Thermal decomposition stages and pyrolysis char yield
Table 4. Pyrolysis products of H lignin and P lignin (H: p-hydroxyphenyl type, G: guaiacyl type, S: syringyl type, C: catechol)
Table 5. Product distribution of non-isothermal pyrolysis of lignins
Table 6. Product distribution of isothermal pyrolysis of lignins
참고문헌
- Amen-Chen, C., Pakdel, H., Roy, C. 2001. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Technology 79: 277-299. https://doi.org/10.1016/S0960-8524(00)00180-2
- Burhenne, L., Messmer, J., Aicher, T., Laborie, M.P. 2013. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis 101: 177-184. https://doi.org/10.1016/j.jaap.2013.01.012
- Chang, S., Zhao, Z., Zheng, A., Zhang, W., Li, H. 2011. Properties of pyrolytic lignin from bio-oil. Transactions of the Chinese Society of Agricultural Machinery 42: 99-105.
- Chu, S., Subrahmanyam, A.V., Huber, G.W. 2013. The pyrolysis chemistry of a B-O-4 type oligomeric lignin model compound. Green Chemistry 15: 125-136. https://doi.org/10.1039/C2GC36332A
- Collard, F., Blin, J. 2014. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicellulose and lignin. Renewable and Sustainable Energy Reviews38: 594-608. https://doi.org/10.1016/j.rser.2014.06.013
- Dabros, T.M.H., Stummann, M.Z., Hoj, M., Jensen, P.A., Grunwaldt, J.D., Gabrielsen, J., Mortensen, P.M., Jensen, A.D. 2018. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis, Progress in Energy and Combustion Science 68: 268-308. https://doi.org/10.1016/j.pecs.2018.05.002
- De Wild, P.J., Huijgen, W.J.J., Gosselink, R.J.A. 2014. Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining 8: 645-657. https://doi.org/10.1002/bbb.1474
- Drage, T.C., Vane, C.H., Abbott, G.D. 2002. The closed system pyrolysis of B-O-4 lignin substructure model compounds. Organic Geochemistry 33: 1523-1531. https://doi.org/10.1016/S0146-6380(02)00119-5
- Fortin, M., Beromi, M.M., Lai, A., Tarves, P.C., Mullen, C.A., Boateng, A.A., West, N.M. 2015. Structral analysis of pyrolytic lignins isolated from Switchgrass fast-pyrolysis oil. Energy and Fuels 29: 8017-8026. https://doi.org/10.1021/acs.energyfuels.5b01726
- Gong, S.H., Ahn, B.J., Lee, S.M., Lee, J.J., Lee, Y.K., Lee, J.W. 2016. Thermal degradation behavior of biomass depending on torrefaction temperatures and heating rates. Journal of the Korean Wood Science and Technology 44(5): 685-694. https://doi.org/10.5658/WOOD.2016.44.5.685
- Hwang, H., Choi, J.W. 2018. Preparation of nanoporous activated carbon with sulfuric acid lignin and its application as a biosorbent. Journal of the Korean Wood Science and Technology 46(1): 17- 28. https://doi.org/10.5658/WOOD.2018.46.1.17
- Hwang, H., Oh, S., Kim, J.Y., Lee, S., Cho, T., Choi, J.W. 2012. Effect of particle size and moisture content of woody biomass on the feature of pyrolytic products. Journal of the Korean Wood Science and Technology 40(6): 445-453. https://doi.org/10.5658/WOOD.2012.40.6.445
- Jang, S.K., Kim, J.H., Jeong, H., Choi, J.H., Lee, S.M., Choi, I.G. 2018. Investigation of conditions for dilute acid pretreatment for improving xylose solubilization and glucose production by supercritical water hydrolysis from Quercus mongolica. Renewable Energy 117: 150-156. https://doi.org/10.1016/j.renene.2017.10.015
- Jeong, H., Park, Y.C., Seong, Y.J., Lee, S.M. 2017. Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst. Bioresource Technology 245: 351-357. https://doi.org/10.1016/j.biortech.2017.08.058
- Kang, A., Lee, T.S. 2015. Converting sugars to biofuels: ethanol and beyond. Bioengineering 2: 184-203. https://doi.org/10.3390/bioengineering2040184
- Kawamoto, H. 2017. Lignin pyrolysis reaction. Journalof Wood Science 63: 117-132. https://doi.org/10.1007/s10086-016-1606-z
- Kim, J.Y., Heo, S., Park, S.Y., Choi, I.G., Choi, J.W. 2017. Selective production of monomeric phenols from lignin via two-step catalytic cracking process. Journal of the Korean Wood Science and Technology 45(3): 278-287. https://doi.org/10.5658/WOOD.2017.45.3.278
- Kim, J.Y., Kim, T.S., Hwang, H., Oh, S., Choi, J.W. 2012. Chemical structural characterization of lignin extracted from pitch pine with ionic liquid (1-ethyl-3-methylimidazolium acetate). Journal of the Korean Wood Science and Technology 40(3): 194-203. https://doi.org/10.5658/WOOD.2012.40.3.194
- Kim, J.Y., Oh, S., Hwang, H., Moon, Y., Choi, J.W. 2013. Evaluation of primary thermal degradation feature of M. Sacchariflorus after removing inorganic compounds using distilled water. Journal of the Korean Wood Science and Technology 41(4): 276-286. https://doi.org/10.5658/WOOD.2013.41.4.276
- Kim, K.H., Moon, S.J., Kim, T.S., Lee, S.M., Yeo, H., Choi, I.G., Choi, J.W. 2011. Characterization of pyrolytic lignin in biooil produced with yellow poplar (Liriodendron tulipifera). Journal of the Korean Wood Science and Technology 39(1): 86-94. https://doi.org/10.5658/WOOD.2011.39.1.86
- Kim, Y.M., Jae, J., Myung, S., Sung, B.H., Dong, J.I., Park, Y.K. 2016. Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata. Bioresource Technology 219: 371-377. https://doi.org/10.1016/j.biortech.2016.08.001
- Lee, H.W., Kim, Y.M., Jae, J., Sung, B.H., Jung, S.C., Kim, S.C., Park, Y.K. 2016a. Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natural zeolite and ex-situ HZSM-5. Journal of Analytical and Applied Pyrolysis 122: 282-288. https://doi.org/10.1016/j.jaap.2016.09.015
- Lee, J.H., Moon, J.G., Choi, I.G., Choi J.W. 2016b. Study on the thermochemical degradation features of empty fruit bunch on the function of pyrolysis temperature. Journal of the Korean Wood Science and Technology 44(3): 350-359. https://doi.org/10.5658/WOOD.2016.44.3.350
- Lin, X., Sui, S., Tan, S., Pittman Jr, C.U., Sun, J., Zhang, Z. 2015. Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS. Energies 8: 5107-5121. https://doi.org/10.3390/en8065107
- Lv, G., Wu, S. 2012. Analytical pyrolysis studies of corn stalk and its three main components by TGMS and Py-GC/MS. Journal of Analytical and Applied Pyrolysis 97: 11-18. https://doi.org/10.1016/j.jaap.2012.04.010
- Min, C.H., Um, B.H. 2017. Effect of process parameters and kraft lignin additive on the mechanical properties of miscanthus pellets. Journal of the Korean Wood Science and Technology 45(6): 703-719. https://doi.org/10.5658/WOOD.2017.45.6.703
- Moon, J., Lee, J.H., Hwang, H., Choi, I.G., Choi, J.W. 2016. Effect of inorganic constituents existing in Empty Fruit Bunch (EFB) on features of pyrolysis products. Journal of the Korean Wood Science and Technology 44(5): 629-638. https://doi.org/10.5658/WOOD.2016.44.5.629
- Mu, W., Ben, H., Ragauskas, A., Deng, Y. 2013. Lignin pyrolysis components and upgrading-technology review. Bioenergy Research6: 1183-1204. https://doi.org/10.1007/s12155-013-9314-7
- Ryu, G.H., Jeong, H.S., Jang, S.K. Hong, C.Y.. Choi, J.W., Choi, I.G. 2016. Investigation of furfural yields of liquid hydrolyzate during dilute acid pretreatment process on quercus mongolica using response surface methodology. Journal of the Korean Wood Science and Technology 44(1): 85-95. https://doi.org/10.5658/WOOD.2016.44.1.85
- Scholze, B., Meier, D. 2001. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part 1. Py-GC/MS, FTIR, and functional groups. Journal of Analytical and Applied Pyrolysis 60: 41-54. https://doi.org/10.1016/S0165-2370(00)00110-8
- Seo, J.H., Jeong, H., Lee, H.W., Choi, C.S., Bae, J.H., Lee, S.M., Kim, Y.S. 2019. Characterization of solvent-fractionated lignins from woody biomass treated via supercritical water oxidation. Bioresource Technology 275: 368-374. https://doi.org/10.1016/j.biortech.2018.12.076
- Shen, D., Liu, G., Zhao, J., Xue, J., Guan, S., Xiao, R. 2015. Thermo-chemical conversion of lignin to aromatic compounds: effect of lignin source and reaction temperature. Journal of Analytical and Applied Pyrolysis 112: 56-65. https://doi.org/10.1016/j.jaap.2015.02.022
- Wang, S., Wang, K., Liu, Q., Gu, Y., Luo, Z., Cen, K., Fransson, T. 2009. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnology Advances 27: 562-567. https://doi.org/10.1016/j.biotechadv.2009.04.010
- Wang, S., Lin, H., Ru, B., Sun, W., Wang, Y., Luo, Z. 2014. Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis 108: 78-85. https://doi.org/10.1016/j.jaap.2014.05.014
- Wang, S., Ru, B., Lin, H., Sun, W., Luo, Z. 2015. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresource Technology 182: 120-127. https://doi.org/10.1016/j.biortech.2015.01.127
- Zhang, H., Wu, S., Xie, J. 2017. Evaluation of the effects of isolated lignin on enzymatic hydrolysis of cellulose. Enzyme and Microbial Technology 101: 44-50. https://doi.org/10.1016/j.enzmictec.2017.03.001
- Zhang, J., Kim, K.H., Choi, Y.S., Motagamwala, A.H., Dumesic, J.A., Brown, R.C., Shanks, B.H. 2017. Comparison of fast pyrolysis behavior of cornstover lignins isolated by different methods. ACS Sustainable Chemistry and Engineering 5: 5657-5661. https://doi.org/10.1021/acssuschemeng.7b01393
- Zhou, S., Garcia-Perez, M., Pecha, B., Kersten, S.R.A., McDonald, A.G., Westerhof, R.J.M. 2013. Effect of the fast pyrolysis temperature on the primary and secondary products of lignin. Energy and Fuels 27: 5867-5877. https://doi.org/10.1021/ef4001677
- Zhou, S., Xue, Y., Sharma, A., Bai, X. 2016. Lignin valorization through thermochemical conversion: comparison of hardwood, softwood and herbaceous lignin. ACS Sustainable Chemistry and Engineering 4: 6608-6617. https://doi.org/10.1021/acssuschemeng.6b01488