DOI QR코드

DOI QR Code

Pyrolysis Properties of Lignins Extracted from Different Biorefinery Processes

  • Lee, Hyung Won (Wood Chemistry Division, Forest Products Department, National Institute of Forest Science) ;
  • Jeong, Hanseob (Wood Chemistry Division, Forest Products Department, National Institute of Forest Science) ;
  • Ju, Young-Min (Wood Chemistry Division, Forest Products Department, National Institute of Forest Science) ;
  • Youe, Won-Jae (Wood Chemistry Division, Forest Products Department, National Institute of Forest Science) ;
  • Lee, Jaejung (Wood Chemistry Division, Forest Products Department, National Institute of Forest Science) ;
  • Lee, Soo Min (Wood Chemistry Division, Forest Products Department, National Institute of Forest Science)
  • 투고 : 2019.05.09
  • 심사 : 2019.07.15
  • 발행 : 2019.07.25

초록

The non-isothermal and isothermal pyrolysis properties of H lignin and P lignin extracted from different biorefinery processes (such as supercritical water hydrolysis and fast pyrolysis) were studied using thermogravimetry analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). The lignins were characterized by ultimate/proximate analysis, FT-IR and GPC. Based on the thermogravimetry (TG) and derivative thermogravimetry (DTG) curves, the thermal decomposition stages were obtained and the pyrolysis products were analyzed at each thermal decomposition stage of non-isothermal pyrolysis. The isothermal pyrolysis of lignins was also carried out at 400, 500, and $600^{\circ}C$ to investigate the pyrolysis product distribution at each temperature. In non-isothermal pyrolysis, P lignin recovered from a fast pyrolysis process started to decompose and produced pyrolysis products at a lower temperature than H lignin recovered from a supercritical water hydrolysis process. In isothermal pyrolysis, guaiacyl and syringyl type were the major pyrolysis products at every temperature, while the amounts of p-hydroxyphenyl type and aromatic hydrocarbons increased with the pyrolysis temperature.

키워드

HMJGBP_2019_v47n4_486_f0001.png 이미지

Fig. 1. FT-IR spectra of lignins.

HMJGBP_2019_v47n4_486_f0002.png 이미지

Fig. 3. Chromatograms of non-isothermal pyrolysis of lignins.

HMJGBP_2019_v47n4_486_f0003.png 이미지

Fig. 2. (a) TG and (b) DTG curves of H lignin and P lignin.

Table 1. Ultimate and proximate analysis of H lignin and P lignin

HMJGBP_2019_v47n4_486_t0001.png 이미지

Table 2. Molecular weight and poly dispersity of lignins.

HMJGBP_2019_v47n4_486_t0002.png 이미지

Table 3. Thermal decomposition stages and pyrolysis char yield

HMJGBP_2019_v47n4_486_t0003.png 이미지

Table 4. Pyrolysis products of H lignin and P lignin (H: p-hydroxyphenyl type, G: guaiacyl type, S: syringyl type, C: catechol)

HMJGBP_2019_v47n4_486_t0004.png 이미지

Table 5. Product distribution of non-isothermal pyrolysis of lignins

HMJGBP_2019_v47n4_486_t0005.png 이미지

Table 6. Product distribution of isothermal pyrolysis of lignins

HMJGBP_2019_v47n4_486_t0006.png 이미지

참고문헌

  1. Amen-Chen, C., Pakdel, H., Roy, C. 2001. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Technology 79: 277-299. https://doi.org/10.1016/S0960-8524(00)00180-2
  2. Burhenne, L., Messmer, J., Aicher, T., Laborie, M.P. 2013. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis 101: 177-184. https://doi.org/10.1016/j.jaap.2013.01.012
  3. Chang, S., Zhao, Z., Zheng, A., Zhang, W., Li, H. 2011. Properties of pyrolytic lignin from bio-oil. Transactions of the Chinese Society of Agricultural Machinery 42: 99-105.
  4. Chu, S., Subrahmanyam, A.V., Huber, G.W. 2013. The pyrolysis chemistry of a B-O-4 type oligomeric lignin model compound. Green Chemistry 15: 125-136. https://doi.org/10.1039/C2GC36332A
  5. Collard, F., Blin, J. 2014. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicellulose and lignin. Renewable and Sustainable Energy Reviews38: 594-608. https://doi.org/10.1016/j.rser.2014.06.013
  6. Dabros, T.M.H., Stummann, M.Z., Hoj, M., Jensen, P.A., Grunwaldt, J.D., Gabrielsen, J., Mortensen, P.M., Jensen, A.D. 2018. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis, Progress in Energy and Combustion Science 68: 268-308. https://doi.org/10.1016/j.pecs.2018.05.002
  7. De Wild, P.J., Huijgen, W.J.J., Gosselink, R.J.A. 2014. Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining 8: 645-657. https://doi.org/10.1002/bbb.1474
  8. Drage, T.C., Vane, C.H., Abbott, G.D. 2002. The closed system pyrolysis of B-O-4 lignin substructure model compounds. Organic Geochemistry 33: 1523-1531. https://doi.org/10.1016/S0146-6380(02)00119-5
  9. Fortin, M., Beromi, M.M., Lai, A., Tarves, P.C., Mullen, C.A., Boateng, A.A., West, N.M. 2015. Structral analysis of pyrolytic lignins isolated from Switchgrass fast-pyrolysis oil. Energy and Fuels 29: 8017-8026. https://doi.org/10.1021/acs.energyfuels.5b01726
  10. Gong, S.H., Ahn, B.J., Lee, S.M., Lee, J.J., Lee, Y.K., Lee, J.W. 2016. Thermal degradation behavior of biomass depending on torrefaction temperatures and heating rates. Journal of the Korean Wood Science and Technology 44(5): 685-694. https://doi.org/10.5658/WOOD.2016.44.5.685
  11. Hwang, H., Choi, J.W. 2018. Preparation of nanoporous activated carbon with sulfuric acid lignin and its application as a biosorbent. Journal of the Korean Wood Science and Technology 46(1): 17- 28. https://doi.org/10.5658/WOOD.2018.46.1.17
  12. Hwang, H., Oh, S., Kim, J.Y., Lee, S., Cho, T., Choi, J.W. 2012. Effect of particle size and moisture content of woody biomass on the feature of pyrolytic products. Journal of the Korean Wood Science and Technology 40(6): 445-453. https://doi.org/10.5658/WOOD.2012.40.6.445
  13. Jang, S.K., Kim, J.H., Jeong, H., Choi, J.H., Lee, S.M., Choi, I.G. 2018. Investigation of conditions for dilute acid pretreatment for improving xylose solubilization and glucose production by supercritical water hydrolysis from Quercus mongolica. Renewable Energy 117: 150-156. https://doi.org/10.1016/j.renene.2017.10.015
  14. Jeong, H., Park, Y.C., Seong, Y.J., Lee, S.M. 2017. Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst. Bioresource Technology 245: 351-357. https://doi.org/10.1016/j.biortech.2017.08.058
  15. Kang, A., Lee, T.S. 2015. Converting sugars to biofuels: ethanol and beyond. Bioengineering 2: 184-203. https://doi.org/10.3390/bioengineering2040184
  16. Kawamoto, H. 2017. Lignin pyrolysis reaction. Journalof Wood Science 63: 117-132. https://doi.org/10.1007/s10086-016-1606-z
  17. Kim, J.Y., Heo, S., Park, S.Y., Choi, I.G., Choi, J.W. 2017. Selective production of monomeric phenols from lignin via two-step catalytic cracking process. Journal of the Korean Wood Science and Technology 45(3): 278-287. https://doi.org/10.5658/WOOD.2017.45.3.278
  18. Kim, J.Y., Kim, T.S., Hwang, H., Oh, S., Choi, J.W. 2012. Chemical structural characterization of lignin extracted from pitch pine with ionic liquid (1-ethyl-3-methylimidazolium acetate). Journal of the Korean Wood Science and Technology 40(3): 194-203. https://doi.org/10.5658/WOOD.2012.40.3.194
  19. Kim, J.Y., Oh, S., Hwang, H., Moon, Y., Choi, J.W. 2013. Evaluation of primary thermal degradation feature of M. Sacchariflorus after removing inorganic compounds using distilled water. Journal of the Korean Wood Science and Technology 41(4): 276-286. https://doi.org/10.5658/WOOD.2013.41.4.276
  20. Kim, K.H., Moon, S.J., Kim, T.S., Lee, S.M., Yeo, H., Choi, I.G., Choi, J.W. 2011. Characterization of pyrolytic lignin in biooil produced with yellow poplar (Liriodendron tulipifera). Journal of the Korean Wood Science and Technology 39(1): 86-94. https://doi.org/10.5658/WOOD.2011.39.1.86
  21. Kim, Y.M., Jae, J., Myung, S., Sung, B.H., Dong, J.I., Park, Y.K. 2016. Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata. Bioresource Technology 219: 371-377. https://doi.org/10.1016/j.biortech.2016.08.001
  22. Lee, H.W., Kim, Y.M., Jae, J., Sung, B.H., Jung, S.C., Kim, S.C., Park, Y.K. 2016a. Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natural zeolite and ex-situ HZSM-5. Journal of Analytical and Applied Pyrolysis 122: 282-288. https://doi.org/10.1016/j.jaap.2016.09.015
  23. Lee, J.H., Moon, J.G., Choi, I.G., Choi J.W. 2016b. Study on the thermochemical degradation features of empty fruit bunch on the function of pyrolysis temperature. Journal of the Korean Wood Science and Technology 44(3): 350-359. https://doi.org/10.5658/WOOD.2016.44.3.350
  24. Lin, X., Sui, S., Tan, S., Pittman Jr, C.U., Sun, J., Zhang, Z. 2015. Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS. Energies 8: 5107-5121. https://doi.org/10.3390/en8065107
  25. Lv, G., Wu, S. 2012. Analytical pyrolysis studies of corn stalk and its three main components by TGMS and Py-GC/MS. Journal of Analytical and Applied Pyrolysis 97: 11-18. https://doi.org/10.1016/j.jaap.2012.04.010
  26. Min, C.H., Um, B.H. 2017. Effect of process parameters and kraft lignin additive on the mechanical properties of miscanthus pellets. Journal of the Korean Wood Science and Technology 45(6): 703-719. https://doi.org/10.5658/WOOD.2017.45.6.703
  27. Moon, J., Lee, J.H., Hwang, H., Choi, I.G., Choi, J.W. 2016. Effect of inorganic constituents existing in Empty Fruit Bunch (EFB) on features of pyrolysis products. Journal of the Korean Wood Science and Technology 44(5): 629-638. https://doi.org/10.5658/WOOD.2016.44.5.629
  28. Mu, W., Ben, H., Ragauskas, A., Deng, Y. 2013. Lignin pyrolysis components and upgrading-technology review. Bioenergy Research6: 1183-1204. https://doi.org/10.1007/s12155-013-9314-7
  29. Ryu, G.H., Jeong, H.S., Jang, S.K. Hong, C.Y.. Choi, J.W., Choi, I.G. 2016. Investigation of furfural yields of liquid hydrolyzate during dilute acid pretreatment process on quercus mongolica using response surface methodology. Journal of the Korean Wood Science and Technology 44(1): 85-95. https://doi.org/10.5658/WOOD.2016.44.1.85
  30. Scholze, B., Meier, D. 2001. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part 1. Py-GC/MS, FTIR, and functional groups. Journal of Analytical and Applied Pyrolysis 60: 41-54. https://doi.org/10.1016/S0165-2370(00)00110-8
  31. Seo, J.H., Jeong, H., Lee, H.W., Choi, C.S., Bae, J.H., Lee, S.M., Kim, Y.S. 2019. Characterization of solvent-fractionated lignins from woody biomass treated via supercritical water oxidation. Bioresource Technology 275: 368-374. https://doi.org/10.1016/j.biortech.2018.12.076
  32. Shen, D., Liu, G., Zhao, J., Xue, J., Guan, S., Xiao, R. 2015. Thermo-chemical conversion of lignin to aromatic compounds: effect of lignin source and reaction temperature. Journal of Analytical and Applied Pyrolysis 112: 56-65. https://doi.org/10.1016/j.jaap.2015.02.022
  33. Wang, S., Wang, K., Liu, Q., Gu, Y., Luo, Z., Cen, K., Fransson, T. 2009. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnology Advances 27: 562-567. https://doi.org/10.1016/j.biotechadv.2009.04.010
  34. Wang, S., Lin, H., Ru, B., Sun, W., Wang, Y., Luo, Z. 2014. Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis 108: 78-85. https://doi.org/10.1016/j.jaap.2014.05.014
  35. Wang, S., Ru, B., Lin, H., Sun, W., Luo, Z. 2015. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresource Technology 182: 120-127. https://doi.org/10.1016/j.biortech.2015.01.127
  36. Zhang, H., Wu, S., Xie, J. 2017. Evaluation of the effects of isolated lignin on enzymatic hydrolysis of cellulose. Enzyme and Microbial Technology 101: 44-50. https://doi.org/10.1016/j.enzmictec.2017.03.001
  37. Zhang, J., Kim, K.H., Choi, Y.S., Motagamwala, A.H., Dumesic, J.A., Brown, R.C., Shanks, B.H. 2017. Comparison of fast pyrolysis behavior of cornstover lignins isolated by different methods. ACS Sustainable Chemistry and Engineering 5: 5657-5661. https://doi.org/10.1021/acssuschemeng.7b01393
  38. Zhou, S., Garcia-Perez, M., Pecha, B., Kersten, S.R.A., McDonald, A.G., Westerhof, R.J.M. 2013. Effect of the fast pyrolysis temperature on the primary and secondary products of lignin. Energy and Fuels 27: 5867-5877. https://doi.org/10.1021/ef4001677
  39. Zhou, S., Xue, Y., Sharma, A., Bai, X. 2016. Lignin valorization through thermochemical conversion: comparison of hardwood, softwood and herbaceous lignin. ACS Sustainable Chemistry and Engineering 4: 6608-6617. https://doi.org/10.1021/acssuschemeng.6b01488