DOI QR코드

DOI QR Code

Effects of Nanoclay and Glass Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs

  • Seo, Young-Rok (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Kim, Birm-June (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Lee, Sun-Young (Wood Chemistry Division, National Institute of Forest Science)
  • Received : 2019.04.02
  • Accepted : 2019.07.15
  • Published : 2019.07.25

Abstract

When wood plastic composites (WPCs) have been used for a certain period of time, they become waste materials and should be recycled to reduce their environmental impact. Waste WPCs can be transformed into reinforced composites, in which fillers are used to improve their performance. In this study, recycled WPCs were prepared using different proportions of waste WPCs, nanoclay, and glass fiber. The effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of the recycled WPCs were investigated. X-ray diffraction showed that the nanoclay intercalates in the WPCs. Additionally, scanning electron micrographs revealed that the glass fiber is adequately dispersed. According to the analysis of mechanical properties, the simultaneous incorporation of nanoclay and glass fiber improved both tensile and flexural strengths. However, as the amount of fillers increases, their dispersion becomes limited and the tensile and flexural modulus were not further improved. The synergistic effect of nanoclay and glass fiber in recycled WPCs enhanced the thermal stability and crystallinity ($X_c$). Also, the presence of nanoclay improved the water absorption properties. The results suggested that recycled WPCs reinforced with nanoclay and glass fiber improved the deteriorated performance, showing the potential of recycled waste WPCs.

Keywords

HMJGBP_2019_v47n4_472_f0001.png 이미지

Fig. 1. Waste WPC with crushed form.

HMJGBP_2019_v47n4_472_f0002.png 이미지

Fig. 2. XRD patterns of various recycled WPCs.

HMJGBP_2019_v47n4_472_f0003.png 이미지

Fig. 3. SEM images of various recycled WPCs: (a) W-WPC100 (× 5000) (b) W-WPC85/NC15 (× 5000) (c) W-WPC80/GFC20 (× 100) (d) W-WPC40/GFC60 (× 100) (e) W-WPC40/GFC60 (× 5000) (f) W-WPC25/NC15/GFC60 (× 5000).

HMJGBP_2019_v47n4_472_f0004.png 이미지

Fig. 4. Impact strength of various recycled WPCs.

HMJGBP_2019_v47n4_472_f0005.png 이미지

Fig. 5. Tensile properties of various recycled WPCs: (a) tensile strength (b) tensile modulus.

HMJGBP_2019_v47n4_472_f0006.png 이미지

Fig. 6. Flexural properties of various recycled WPCs: (a) flexural strength (b) flexural modulus.

HMJGBP_2019_v47n4_472_f0007.png 이미지

Fig. 7. TGA curves of various recycled WPCs (GFC series): (a) TG curve (b) DTG curve.

HMJGBP_2019_v47n4_472_f0008.png 이미지

Fig. 8. TG curves of various recycled WPCs: (a) GFC 0 series (b) GFC 20 series (c) GFC 40 series (d) GFC 60 series.

HMJGBP_2019_v47n4_472_f0009.png 이미지

Fig. 9. DTG curves of various recycled WPCs: (a) GFC 0 series (b) GFC 20 series (c) GFC 40 series (d) GFC 60 series.

HMJGBP_2019_v47n4_472_f0010.png 이미지

Fig. 10. Water absorption properties of various recycled WPCs: (a) water absorption (b) thickness swelling.

Table 1. Formulations ratios of various recycled WPCs

HMJGBP_2019_v47n4_472_t0001.png 이미지

Table 2. XRD data of various recycled WPCs

HMJGBP_2019_v47n4_472_t0002.png 이미지

Table 3. TGA data of various recycled WPCs

HMJGBP_2019_v47n4_472_t0003.png 이미지

Table 4. DSC data of various recycled WPCs

HMJGBP_2019_v47n4_472_t0004.png 이미지

Table 5. Water absorption data of various recycled WPCs

HMJGBP_2019_v47n4_472_t0005.png 이미지

References

  1. Adhikary, K.B., Pang, S., Staiger, M.P. 2008. Dimensional stability and mechanical behavior of wood-plastic composites based on recycled and virgin high-density polyethylene(HDPE). Composites Part B: Engineering 39(5): 807-815. https://doi.org/10.1016/j.compositesb.2007.10.005
  2. Alamri, H., Low, I.M. 2012. Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Materials & Design 42: 214-222. https://doi.org/10.1016/j.matdes.2012.05.060
  3. Ashori, A. 2008. Wood-plastic composites as promising green-composites for automotive industries!. Bioresource Technology 99(11): 4661-4667. https://doi.org/10.1016/j.biortech.2007.09.043
  4. Ayrilmis, N., Akbulut, T., Dundar, T., White, R.H., Mengeloglu, F., Buyuksari, U., Candan, Z., Avci, E. 2012. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites. Construction and Building Materials 33: 63-69. https://doi.org/10.1016/j.conbuildmat.2012.01.013
  5. Borse, N.K., Kamal, M.R. 2009. Estimation of stresses required for exfoliation of clay particles in polymer nanocomposites. Polymer Engineering and Science 49(4): 641-650. https://doi.org/10.1002/pen.21211
  6. Bozkurt, E., Kaya, E., Tanoglu, M. 2007. Mechanical and thermal behavior of non-crimp glass fiber reinforced layered clay/epoxy nanocomposites. Composites Science and Technology 67(15-16): 3394-3403. https://doi.org/10.1016/j.compscitech.2007.03.021
  7. Chaharmahali, M., Tajvidi, M. 2008. Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard. Polymer Composites 29(6): 606-610. https://doi.org/10.1002/pc.20434
  8. Choi, Y.S., Park, J.W., Lee, J.H., Shin, J.H., Jang, S.W., Kim, H.J. 2018. Preparation of EVA/intumescent/ nano-clay composites with flame retardant properties and cross laminated timber (CLT) application technology. Journal of the Korean Wood Science and Technology 46(1): 73-84. https://doi.org/10.5658/WOOD.2018.46.1.73
  9. Deka, B.K., Maji, T.K. 2010. Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite. Composites Science and Technology 70(12): 1755-1761. https://doi.org/10.1016/j.compscitech.2010.07.010
  10. Gardner, D.J., Han, Y., Wang, L. 2015. Wood-plastic composite technology. Wood Structure and Function 1(3): 139-150.
  11. Gwon, J.G., Lee, D.B., Cho, H.J., Chun, S.J., Choi, D.H., Lee, S.Y. 2017. Determination on wood flour content in WPC through thermogravimetric analysis and accelerator mass spectrometry. Journal of the Korean Wood Science and Technology 45(5): 572-579. https://doi.org/10.5658/WOOD.2017.45.5.572
  12. Hemmasi, A.H., Khademi-Eslam, H., Talaiepoor, M., Kord, B. 2010. Effect of nanoclay on the mechanical and morphological properties of wood polymer nanocomposite. Journal of Reinforced Plastics and Composites 29(7): 964-971. https://doi.org/10.1177/0731684408101790
  13. Hyvarinen, M., Ronkanen, M., Karki, T. 2019. The effect of the use of construction and demolition waste on the mechanical and moisture properties of a wood-plastic composite. Composite Structure 210: 321-326. https://doi.org/10.1016/j.compstruct.2018.11.063
  14. Jiang, H., Kamdem, D.P., Bezubic, B., Ruede, P. 2003. Mechanical properties of poly(vinyl chloride)/wood flour/glass fiber hybrid composites. Journal of Vinyl & Additive Technology 9(3): 138-145. https://doi.org/10.1002/vnl.10075
  15. Kanny, K., Jawahar, P., Moodley, V.K. 2008. Mechanical and tribological behavior of clay-polypropylene nanocomposites. Journal of Materials Science 43(22): 7230-7238. https://doi.org/10.1007/s10853-008-2938-x
  16. Kim, B.C., Park, S.W., Lee, D.G. 2008. Fracture toughness of the nano-particle reinforced epoxy composite. Composite Structures 86(1-3): 69-77. https://doi.org/10.1016/j.compstruct.2008.03.005
  17. Kim, B.J. 2014. Overview of wood plastic composites: focusing on use of bio-based plastics and coextrusion technique. Journal of the Korean Wood Science and Technology 42(5): 499-509. https://doi.org/10.5658/WOOD.2014.42.5.499
  18. Modesti, M., Lorenzetti, A., Bon, D., Besco, S. 2006. Thermal behaviour of compatibilised polypropylene nanocomposite: Effect of processing conditions. Polymer Degradation and Stability 91(4): 672-680. https://doi.org/10.1016/j.polymdegradstab.2005.05.018
  19. Najafi, S.K., Hamidinia, E., Tajvidi, M. 2006. Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science 100(5): 3641-3645. https://doi.org/10.1002/app.23159
  20. Pinnavaia, T.J., Beall, G.W. 2000. Polymer-clay nanocomposites. John Wiley.
  21. Rahman, N.A., Hassan, A., Yahya, R., Lafia-Araga, R.A., Hornsby, P.R. 2012. Micro-structural, thermal, and mechanical properties of injection-molded glass fiber/nanoclay/polypropylene composites. Journal of Reinforced Plastics and Composites 31(4): 269-281. https://doi.org/10.1177/0731684411435727
  22. Rahman, N.A., Hassan, A., Yahya, R. 2012. Polypropylene/ glass fiber/nanoclay hybrid composites: morphological, thermal, dynamic mechanical and impact behaviors. Journal of Reinforced Plastics and Composites 31(18): 1247-1257. https://doi.org/10.1177/0731684412456445
  23. Rizvi, G.M., Semeralul, H. 2008. Glass-fiber-reinforced wood/plastic composites. Journal of Vinyl & Additive Technology 14(1): 39-42. https://doi.org/10.1002/vnl.20135
  24. Thomason, J.L. 2002. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Composites Part A: Applied Science and Manufacturing 33(12): 1641-1652. https://doi.org/10.1016/S1359-835X(02)00179-3
  25. Wang, K.H., Choi, M.H., Koo, C.M., Xu, M., Chung, I.J., Jang, M.C., Choi, S.W., Song, H.H. 2002. Morphology and physical properties of polyethylene/ silicate nanocomposite prepared by melt intercalation. Journal of Polymer Science: Part B: Polymer Physics 40(14): 1454-1463. https://doi.org/10.1002/polb.10201
  26. Zhang, Y., Ma, Y. 2016. Study on the preparation and mechanical properties of fiberglass reinforced wood-based composite. Journal of the Korean Wood Science and Technology 44(4): 505-514. https://doi.org/10.5658/WOOD.2016.44.4.505