Fig. 1. Waste WPC with crushed form.
Fig. 2. XRD patterns of various recycled WPCs.
Fig. 3. SEM images of various recycled WPCs: (a) W-WPC100 (× 5000) (b) W-WPC85/NC15 (× 5000) (c) W-WPC80/GFC20 (× 100) (d) W-WPC40/GFC60 (× 100) (e) W-WPC40/GFC60 (× 5000) (f) W-WPC25/NC15/GFC60 (× 5000).
Fig. 4. Impact strength of various recycled WPCs.
Fig. 5. Tensile properties of various recycled WPCs: (a) tensile strength (b) tensile modulus.
Fig. 6. Flexural properties of various recycled WPCs: (a) flexural strength (b) flexural modulus.
Fig. 7. TGA curves of various recycled WPCs (GFC series): (a) TG curve (b) DTG curve.
Fig. 8. TG curves of various recycled WPCs: (a) GFC 0 series (b) GFC 20 series (c) GFC 40 series (d) GFC 60 series.
Fig. 9. DTG curves of various recycled WPCs: (a) GFC 0 series (b) GFC 20 series (c) GFC 40 series (d) GFC 60 series.
Fig. 10. Water absorption properties of various recycled WPCs: (a) water absorption (b) thickness swelling.
Table 1. Formulations ratios of various recycled WPCs
Table 2. XRD data of various recycled WPCs
Table 3. TGA data of various recycled WPCs
Table 4. DSC data of various recycled WPCs
Table 5. Water absorption data of various recycled WPCs
References
- Adhikary, K.B., Pang, S., Staiger, M.P. 2008. Dimensional stability and mechanical behavior of wood-plastic composites based on recycled and virgin high-density polyethylene(HDPE). Composites Part B: Engineering 39(5): 807-815. https://doi.org/10.1016/j.compositesb.2007.10.005
- Alamri, H., Low, I.M. 2012. Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Materials & Design 42: 214-222. https://doi.org/10.1016/j.matdes.2012.05.060
- Ashori, A. 2008. Wood-plastic composites as promising green-composites for automotive industries!. Bioresource Technology 99(11): 4661-4667. https://doi.org/10.1016/j.biortech.2007.09.043
- Ayrilmis, N., Akbulut, T., Dundar, T., White, R.H., Mengeloglu, F., Buyuksari, U., Candan, Z., Avci, E. 2012. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites. Construction and Building Materials 33: 63-69. https://doi.org/10.1016/j.conbuildmat.2012.01.013
- Borse, N.K., Kamal, M.R. 2009. Estimation of stresses required for exfoliation of clay particles in polymer nanocomposites. Polymer Engineering and Science 49(4): 641-650. https://doi.org/10.1002/pen.21211
- Bozkurt, E., Kaya, E., Tanoglu, M. 2007. Mechanical and thermal behavior of non-crimp glass fiber reinforced layered clay/epoxy nanocomposites. Composites Science and Technology 67(15-16): 3394-3403. https://doi.org/10.1016/j.compscitech.2007.03.021
- Chaharmahali, M., Tajvidi, M. 2008. Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard. Polymer Composites 29(6): 606-610. https://doi.org/10.1002/pc.20434
- Choi, Y.S., Park, J.W., Lee, J.H., Shin, J.H., Jang, S.W., Kim, H.J. 2018. Preparation of EVA/intumescent/ nano-clay composites with flame retardant properties and cross laminated timber (CLT) application technology. Journal of the Korean Wood Science and Technology 46(1): 73-84. https://doi.org/10.5658/WOOD.2018.46.1.73
- Deka, B.K., Maji, T.K. 2010. Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite. Composites Science and Technology 70(12): 1755-1761. https://doi.org/10.1016/j.compscitech.2010.07.010
- Gardner, D.J., Han, Y., Wang, L. 2015. Wood-plastic composite technology. Wood Structure and Function 1(3): 139-150.
- Gwon, J.G., Lee, D.B., Cho, H.J., Chun, S.J., Choi, D.H., Lee, S.Y. 2017. Determination on wood flour content in WPC through thermogravimetric analysis and accelerator mass spectrometry. Journal of the Korean Wood Science and Technology 45(5): 572-579. https://doi.org/10.5658/WOOD.2017.45.5.572
- Hemmasi, A.H., Khademi-Eslam, H., Talaiepoor, M., Kord, B. 2010. Effect of nanoclay on the mechanical and morphological properties of wood polymer nanocomposite. Journal of Reinforced Plastics and Composites 29(7): 964-971. https://doi.org/10.1177/0731684408101790
- Hyvarinen, M., Ronkanen, M., Karki, T. 2019. The effect of the use of construction and demolition waste on the mechanical and moisture properties of a wood-plastic composite. Composite Structure 210: 321-326. https://doi.org/10.1016/j.compstruct.2018.11.063
- Jiang, H., Kamdem, D.P., Bezubic, B., Ruede, P. 2003. Mechanical properties of poly(vinyl chloride)/wood flour/glass fiber hybrid composites. Journal of Vinyl & Additive Technology 9(3): 138-145. https://doi.org/10.1002/vnl.10075
- Kanny, K., Jawahar, P., Moodley, V.K. 2008. Mechanical and tribological behavior of clay-polypropylene nanocomposites. Journal of Materials Science 43(22): 7230-7238. https://doi.org/10.1007/s10853-008-2938-x
- Kim, B.C., Park, S.W., Lee, D.G. 2008. Fracture toughness of the nano-particle reinforced epoxy composite. Composite Structures 86(1-3): 69-77. https://doi.org/10.1016/j.compstruct.2008.03.005
- Kim, B.J. 2014. Overview of wood plastic composites: focusing on use of bio-based plastics and coextrusion technique. Journal of the Korean Wood Science and Technology 42(5): 499-509. https://doi.org/10.5658/WOOD.2014.42.5.499
- Modesti, M., Lorenzetti, A., Bon, D., Besco, S. 2006. Thermal behaviour of compatibilised polypropylene nanocomposite: Effect of processing conditions. Polymer Degradation and Stability 91(4): 672-680. https://doi.org/10.1016/j.polymdegradstab.2005.05.018
- Najafi, S.K., Hamidinia, E., Tajvidi, M. 2006. Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science 100(5): 3641-3645. https://doi.org/10.1002/app.23159
- Pinnavaia, T.J., Beall, G.W. 2000. Polymer-clay nanocomposites. John Wiley.
- Rahman, N.A., Hassan, A., Yahya, R., Lafia-Araga, R.A., Hornsby, P.R. 2012. Micro-structural, thermal, and mechanical properties of injection-molded glass fiber/nanoclay/polypropylene composites. Journal of Reinforced Plastics and Composites 31(4): 269-281. https://doi.org/10.1177/0731684411435727
- Rahman, N.A., Hassan, A., Yahya, R. 2012. Polypropylene/ glass fiber/nanoclay hybrid composites: morphological, thermal, dynamic mechanical and impact behaviors. Journal of Reinforced Plastics and Composites 31(18): 1247-1257. https://doi.org/10.1177/0731684412456445
- Rizvi, G.M., Semeralul, H. 2008. Glass-fiber-reinforced wood/plastic composites. Journal of Vinyl & Additive Technology 14(1): 39-42. https://doi.org/10.1002/vnl.20135
- Thomason, J.L. 2002. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Composites Part A: Applied Science and Manufacturing 33(12): 1641-1652. https://doi.org/10.1016/S1359-835X(02)00179-3
- Wang, K.H., Choi, M.H., Koo, C.M., Xu, M., Chung, I.J., Jang, M.C., Choi, S.W., Song, H.H. 2002. Morphology and physical properties of polyethylene/ silicate nanocomposite prepared by melt intercalation. Journal of Polymer Science: Part B: Polymer Physics 40(14): 1454-1463. https://doi.org/10.1002/polb.10201
- Zhang, Y., Ma, Y. 2016. Study on the preparation and mechanical properties of fiberglass reinforced wood-based composite. Journal of the Korean Wood Science and Technology 44(4): 505-514. https://doi.org/10.5658/WOOD.2016.44.4.505