Fig. 1. Confusion matrix (Yang et al., 2019).
Table 1. Sample class index and number of samples of each fold in k-fold cross-validation (k = 5)
Table 2. Architecture of LeNet3 and NIRNet models
Table 3. Performance measures of LeNet3 model by k-fold cross-validation (k = 5)
Table 4. Performance measures of NIRNet model by k-fold cross-validation (k = 5)
Table 5. Performance measures of LeNet3-NIRNet ensemble model by averaging method.
Table 6. Performance measures of LeNet3-NIRNet ensemble model by max-voting method.
References
- Adedipe, O.E., Dawson-Andoh, B., Slahor, J., Osborn, L. 2008. Classification of red oak (Quercus rubra) and white oak (Quercus alba) wood using a near infrared spectrometer and soft independent modelling of class analogies. Journal of Near Infrared Spectroscopy 16(1): 49-57. https://doi.org/10.1255/jnirs.760
- Brunner, C.C., Shaw, G.B., Butler, D.A., Funck, J.W. 2007. Using color in machine vision systems for wood processing. Wood and Fiber Science 22(4): 413-428.
- Cho, B.K., Lohoumi, S., Choi, C., Yang, S.M., Kang, S.G. 2016. Study on Rapid Measurement of Wood Powder Concentration of Wood-Plastic Composites using FT-NIR and FT-IR Spectroscopy Techniques. Journal of the Korean Wood Science and Technology 44(6): 852-863. https://doi.org/10.5658/WOOD.2016.44.6.852
- Eom, Y.J., Park, B.D. 2018. Wood Species Identification of Documentary Woodblocks of Songok Clan of the Milseong Park, Gyeongju, Korea. Journal of the Korean Wood Science and Technology 46(3): 270-277. https://doi.org/10.5658/WOOD.2018.46.3.270
- Goutte, C., Gaussier, E. 2005. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In European Conference on Information Retrieval. pp. 345-359. Springer, Berlin, Heidelberg.
- Kim, S.C., Choi, J. 2016. Study on Wood Species Identification for Daeungjeon Hall of Jeonghyesa Temple, Suncheon. Journal of the Korean Wood Science and Technology 44(6): 897-902. https://doi.org/10.5658/WOOD.2016.44.6.897
- Kingma, D.P., Ba, J. 2014. Adam: A method for stochastic optimization. arXiv:1412.6980.
- Kwon, O., Lee, H.G., Lee, M.R., Jang, S., Yang, S.Y., Park, S.Y., Choi, I.G., Yeo, H. 2017. Automatic Wood Species Identification of Korean Softwood Based on Convolutional Neural Networks. Journal of the Korean Wood Science and Technology 45(6): 797-808. https://doi.org/10.5658/WOOD.2017.45.6.797
- Kwon, O., Lee, H.G., Yang, S.Y., Kim. H., Park, S.Y., Choi, I.G., Yeo, H. 2019. Performance Enhancement of Automatic Wood Classification of Korean Softwood by Ensembles of Convolutional Neural Networks. Journal of the Korean Wood Science and Technology 47(3): 265-276. https://doi.org/10.5658/WOOD.2019.47.3.265
- Lecun, Y., Bottou, L., Bengio, Y., Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11): 2278-2324. https://doi.org/10.1109/5.726791
- Lee, K.H., Seo, J.W., Han, G.S. 2018. Dating Wooden Artifacts Excavated at Imdang-dong Site, Gyeongsan, Korea and Interpreting the Paleoenvironment according to the Wood Identification. Journal of the Korean Wood Science and Technology 46(3): 241-252. https://doi.org/10.5658/WOOD.2018.46.3.241
- Nisgoski, S., de Oliveira, A.A., de Muniz, G.I.B. 2017. Artificial neural network and SIMCA classification in some wood discrimination based on near-infrared spectra. Wood Science and Technology 51(4): 929-942. https://doi.org/10.1007/s00226-017-0915-8
- Park, J., Oh, J., Hwang, I., Jang, H., Choi, J., Kim, S. 2018. Study on species identification for Pungnammun Gate (Treasure 308) in Jeonju, Korea. Journal of the Korean Wood Science and Technology 46(3): 278-284. https://doi.org/10.5658/WOOD.2018.46.3.278
- Park, S.Y., Kim, J.C., Kim, J.H., Yang, S.Y., Kwon, O., Yeo, H., Cho, K.C., Choi, I.G. 2017. Possibility of Wood Classification in Korean Softwood Species Using Near-infrared Spectroscopy Based on Their Chemical Compositions. Journal of the Korean Wood Science and Technology 45(2): 202-212. https://doi.org/10.5658/WOOD.2017.45.2.202
- Russ, A., Fiserova, M., Gigac, J. 2009. Preliminary study of wood species identification by NIR spectroscopy. Wood Research 54(4): 23-32.
- Samat, A., Du, P., Baig, M.H.A., Chakravarty, S., Cheng, L. 2014. Ensemble learning with multiple classifiers and polarimetric features for polarized SAR image classification. Photogrammetric Engineering & Remote Sensing 80(3): 239-251. https://doi.org/10.14358/PERS.80.3.239
- Schapire, R.E. 1990. The strength of weak learnability. Machine learning 5(2): 197-227. https://doi.org/10.1007/BF00116037
- Simonyan, K., and Zisserman, A. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556.
- Yang, S.Y., Park, Y., Chung, H., Kim, H., Park, S.Y., Choi, I.G., Kwon, O., Cho, K.C., Yeo, H. 2017. Partial least squares analysis on near-infrared absorbance spectra by air-dried specific gravity of major domestic softwood species. Journal of the Korean Wood Science and Technology 45(4): 399-408. https://doi.org/10.5658/WOOD.2017.45.4.399
- Yang, S.Y., Park, Y., Chung, H., Kim, H., Park, S.Y., Choi, I.G., Kwon, O., Yeo, H. 2019. Soft Independent Modeling of Class Analogy for Classifying Lumber Species Using Their Near-infrared Spectra. Journal of the Korean Wood Science and Technology 47(1): 101-109. https://doi.org/10.5658/WOOD.2019.47.1.101