DOI QR코드

DOI QR Code

ROBUST SPECIAL ANOSOV ENDOMORPHISMS

  • Moosavi, Seyed Mohsen (Department of Mathematics Faculty of Mathematical Sciences Tarbiat Modares University) ;
  • Tajbakhsh, Khosro (Department of Mathematics Faculty of Mathematical Sciences Tarbiat Modares University)
  • Received : 2018.05.29
  • Accepted : 2018.08.29
  • Published : 2019.07.31

Abstract

In this paper we introduce the notion of "robust special Anosov endomorphisms", and show that Anosov endomorphisms of tori which are not neither an Anosov diffeomorphism nor an expanding map, are not robust special.

Keywords

References

  1. D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, RI, 1969.
  2. N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-HollandMathematical Library, 52, North-Holland Publishing Co., Amsterdam, 1994.
  3. L. Auslander, Bieberbach's theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math. (2) 71 (1960), 579-590. https://doi.org/10.2307/1969945
  4. K. Dekimpe, What is . . . an infra-nilmanifold endomorphism?, Notices Amer. Math. Soc. 58 (2011), no. 5, 688-689.
  5. K. Dekimpe, What an infra-nilmanifold endomorphism really should be. . ., Topol. Methods Nonlinear Anal. 40 (2012), no. 1, 111-136.
  6. R. Mane and C. Pugh, Stability of endomorphisms, in Dynamical systems-Warwick1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ.Warwick, Coventry,1973/1974; presented to E. C. Zeeman on his fiftieth birthday), 175-184. Lecture Notesin Math., 468, Springer, Berlin, 1975.
  7. F. Micena and A. Tahzibi, On the unstable directions and Lyapunov exponents of Anosov endomorphisms, Fund. Math. 235 (2016), no. 1, 37-48. https://doi.org/10.4064/fm92-10-2015
  8. S. M. Moosavi and Kh. Tajbakhsh, Classication of special Anosov endomorphisms of nil-manifolds, (in press) Acta Mathematica Sinica, English Series.
  9. F. Przytycki, Anosov endomorphisms, Studia Math. 58 (1976), no. 3, 249-285. https://doi.org/10.4064/sm-58-3-249-285
  10. M. Shub, Endomorphisms of compact dierentiable manifolds, Amer. J. Math. 91 (1969), 175-199. https://doi.org/10.2307/2373276
  11. N. Sumi, Topological Anosov maps of infra-nil-manifolds, J. Math. Soc. Japan 48 (1996), no. 4, 607-648. https://doi.org/10.2969/jmsj/04840607
  12. M. R. Zhang, On the topologically conjugate classes of Anosov endomorphisms on tori, Chinese Ann. Math. Ser. B 10 (1989), no. 3, 416-425.