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ROBUST SPECIAL ANOSOV ENDOMORPHISMS

Seyed Mohsen Moosavi and Khosro Tajbakhsh

Abstract. In this paper we introduce the notion of “robust special

Anosov endomorphisms”, and show that Anosov endomorphisms of tori

which are not neither an Anosov diffeomorphism nor an expanding map,
are not robust special.

1. Introduction

Let M be a compact, connected, boundaryless finite dimensional C∞ mani-
fold. The big difference between the set of all C1 Anosov diffeomorphisms and
C1 expanding maps on M and the set of all non-invertible C1 Anosov endo-
morphisms on M is that the maps in the first set are C1-structurally stable but
the maps in the second are not. Anosov [1] proved that every Anosov diffeo-
morphism is C1-structurally stable, and Shub [10] showed the same result for
expanding differentiable maps. In [10], Shub also remarked that the techniques
which prove expanding maps are structurally stable should also prove Anosov
endomorphisms are structurally stable. However, Mané and Pugh [6] and Przy-
tycki [9] proved that Anosov endomorphisms which are not diffeomorphisms nor
expanding do not be C1-structurally stable.

Przytycki [9] showed that the set of all C1 Anosov endomorphisms is an
open subset of C1(M,M), the set of all C1 maps from M to itself. We consider
C1 special Anosov endomorphisms. The natural question is that: Is the set of
all C1 special Anosov endomorphisms an open subset of C1(M,M)?

In this paper we show that the answer in general is negative. The question
is equivalent to: Is specialness robust for C1 special Anosov endomorphisms?

A property P for a map f is called robust if there is a neighborhood U of f ,
in the desired topology, such that the property P holds for all g ∈ U . In this
paper, we investigate the following question:

Question. Let f be a special Anosov endomorphism. Can we perturb f such
that the new perturbed map is not special any more?
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In this paper, we show that the answer for the above question is negative
in general. For this we first introduce the concept of a robust special Anosov
endomorphism.

Definition. Let f be a C1 special Anosov endomorphism on a closed manifold.
We say that f is a C1 robust special Anosov endomorphism if there exists a
neighborhood Uf in C1 topology, such that for any g ∈ Uf , g is also a special
Anosov endomorphism. (For the definition of special Anosov endomorphisms
and details see next sections.)

Example 1.1. C1 Anosov diffeomorphisms are invertible and then special. It
is well known that if f is a C1 Anosov diffeomorphism on a closed manifold,
then f is C1-structurally stable, and hence it is C1 robust special.

Firstly, we show that any TA-covering map on an infra-nil-manifold is topo-
logically mixing and therefore topologically transitive.

Proposition 1.2. Let N/Γ be an infra-nil-manifold. If f : N/Γ → N/Γ is
a TA-covering map, then f is topologically mixing and therefore topologically
transitive.

In [8], we proved the following theorem which for the convenience of reader,
we will bring a sketch of the proof in Section 4:

Theorem 1.3 ([8, Theorem 1.10]). Let f : N/Γ→ N/Γ be a covering map of
a nil-manifold and denote as A :N/Γ→ N/Γ the nil-endomorphism homotopic
to f . If f is a special TA-map, then A is a hyperbolic nil-endomorphism and
f is topologically conjugate to A.

Secondly, as a result of Proposition 1.2 and Theorem 1.3, because a torus is
a nil-manifold (and so an infra-nil-manifold), we prove the following theorem.

Theorem 1.4. Suppose n ≥ 2. Then for generic f ∈ A∗(Tn), there exists a
residual set R ⊂ Tn such that for all x ∈ R, x has infinitely many unstable
directions, where

A(Tn) = {f : Tn → Tn : f is a C1Anosov endomorphism},
A∗(Tn) = A(Tn) \ ({Anosov diffeomorphisms} ∪ {expanding maps}).

Finally, we conclude the main result:

Theorem 1.5 (Main Theorem). Every f ∈ A∗(Tn) is not a robust special
Anosov endomorphism.

This theorem means if f ∈ A∗(Tn), we can perturb f such that the result
map is not special any more or the set of all C1 special Anosov endomorphisms
is not an open subset of C1(M,M), in general.
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2. Preliminaries

Let X be a compact metric space with metric d. For a continuous surjection
f : X → X, we let

Xf = {x̃ = (xi) : xi ∈ X and f(xi) = xi+1, i ∈ Z},
σf ((xi)) = (f(xi)).

The map σf : Xf → Xf is called the shift map determined by f . We call
(Xf , σf ) the inverse limit of (X, f). A homeomorphism f : X → X is called
expansive if there is a constant e > 0 (called an expansive constant) such that
if x and y are any two distinct points of X, then d(f i(x), f i(y)) > e for some
integer i. A continuous surjection f : X → X is called c-expansive if there
is a constant e > 0 such that for x̃, ỹ ∈ Xf if d(xi, yi) ≤ e for all i ∈ Z,
then x̃ = ỹ. In particular, if there is a constant e > 0 such that for x, y ∈ X
if d(f i(x), f i(y)) ≤ e for all i ∈ N, then x = y, we say that f is positively
expansive. A sequence of points {xi : a < i < b} of X is called a δ-pseudo
orbit of f if d(f(xi), xi+1) < δ for i ∈ (a, b− 1). Given ε > 0 a δ-pseudo orbit
of {xi} is called to be ε-traced by a point x ∈ X if d(f i(x), xi) < ε for every
i ∈ (a, b− 1). Here the symbols a and b are taken as −∞ ≤ a < b ≤ ∞ if f is
bijective and as −1 ≤ a < b ≤ ∞ if f is not bijective. f has the pseudo orbit
tracing property (abbrev. POTP) if for every ε > 0 there is δ > 0 such that
every δ-pseudo orbit of f can be ε-traced by some point of X. We say that a
homeomorphism f : X → X is a topological Anosov map (abbrev. TA-map) if
f is expansive and has POTP. Analogously, we say that a continuous surjection
f : X → X is a topological Anosov map if f is c-expansive and has POTP,
and say that f is a topological expanding map if f is positively expansive and
open. We can check that every topological expanding map is a TA-map (see
[2, Remark 2.3.10]).

We bring here the definitions of nil-manifolds and infra-nil-manifolds from
Karel Dekimpe in [4] and [5].

Let N be a Lie group and Aut(N) be the set of all automorphisms of N .
Assume that A ∈ Aut(N) is an automorphism of N , such that there exists
a discrete and cocompact subgroup Γ of N , with A(Γ) = Γ. Then the space
of left cosets N/Γ is a closed manifold, and A induces a diffeomorphism A :
N/Γ → N/Γ, gΓ 7→ A(g)Γ. If we want this diffeomorphism to be Anosov, A
must be hyperbolic. It is known that this can happen only when N is nilpotent.
So we restrict ourselves to that case, where the resulting manifold N/Γ is said
to be a nil-manifold. Such a diffeomorphism A induced by an automorphism A
is called a nil-automorphism and is said to be a hyperbolic nil-automorphism,
when A is hyperbolic.

All tori, Tn = Rn/Zn are examples of nil-manifolds.
Now we give an extended definition of nil-manifolds. Let N be a connected

and simply connected nilpotent Lie group and Aut(N) be the group of contin-
uous automorphisms of N . Then Aff(N) = N o Aut(N) acts on N in the
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following way:

∀(n, γ) ∈ Aff(N),∀x ∈ N : (n, γ).x = nγ(x).

So an element of Aff(N) consists of a translational part n ∈ N and a linear
part γ ∈ Aut(N) (as a set Aff(N) is just N × Aut(N)) and Aff(N) acts
on N by first applying the linear part and then multiplying on the left by the
translational part). In this way, Aff(N) can also be seen as a subgroup of
Diff(N).

Now, let C be a compact subgroup of Aut(N) and consider any torsion free
discrete subgroup Γ of N oC, such that the orbit space N/Γ is compact. Note
that Γ acts on N as being also a subgroup of Aff(N). The action of Γ on N
will be free and properly discontinuous, so N/Γ is a manifold, which is called
an infra-nil-manifold.

Klein bottle is an example of infra-nil-manifolds.
In what follows, we will identify N with the subgroup N × {id} of N o

Aut(N) = Aff(N), F with the subgroup {id} × F and Aut(N) with the
subgroup {id} ×Aut(N).

It follows from Theorem 1 of L. Auslander in [3], that Γ ∩ N is a uniform
lattice of N and that Γ/(Γ ∩ N) is a finite group. This shows that the fun-
damental group of an infra-nil-manifold N/Γ is virtually nilpotent (i.e., has a
nilpotent normal subgroup of finite index). In fact Γ∩N is a maximal nilpotent
subgroup of Γ and it is the only normal subgroup of Γ with this property. (This
also follows from [3]).

If we denote by p : N oC → C the natural projection on the second factor,
then p(Γ) = Γ∩N is a uniform lattice of N and that Γ/(Γ∩N). Let F denote
this finite group p(Γ), then we will refer to F as being the holonomy group of Γ
(or of the infra-nil-manifold N/Γ). It follows that Γ ⊆ NoF . In case F = {id},
so Γ ⊆ N , the manifold N/Γ is a nil-manifold. Hence, any infra-nil-manifold
N/Γ is finitely covered by a nil-manifold N/(Γ ∩ N). This also explains the
prefix “infra”.

Fix an infra-nil-manifold N/Γ, so N is a connected and simply connected
nilpotent Lie group and Γ is a torsion free, uniform discrete subgroup of NoF ,
where F is a finite subgroup of Aut(N). We will assume that F is the holonomy
group of Γ (so for any µ ∈ F , there exists an n ∈ N such that (n, µ) ∈ Γ).

We can say that an element of Γ is of the form nµ for some n ∈ N and some
µ ∈ F . Also, any element of Aff(N) can uniquely be written as a product nψ,
where n ∈ N and ψ ∈ Aut(N). The product in Aff(N) is then given as

∀n1, n2 ∈ N, ∀ψ1, ψ2 ∈ Aut(N) : n1ψ1n2ψ2 = n1ψ1(n2)ψ1ψ2.

Now we can define infra-nil-endomorphisms as follows:
Let N be a connected, simply connected nilpotent Lie group and F ⊆

Aut(N) a finite group. Assume that Γ is a torsion free, discrete and uni-
form subgroup of N o F . Let A : N o F → N o F be an automorphism, such
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that A(F ) = F and A(Γ) ⊆ Γ, then, the map

A : N/Γ→ N/Γ, Γ · n 7→ Γ · A(n)

is the infra-nil-endomorphism induced by A. In case A(Γ) = Γ, we call A an
infra-nil-automorphism.

In the definition above, Γ · n denotes the orbit of n under the action of
Γ. The computation above shows that A is well defined. Note that infra-nil-
automorphisms are diffeomorphisms, while in general an infra-nil-endomorph-
ism is a self-covering map.

The following theorem shows that the only maps of an infra-nil-manifold,
that lift to an automorphism of the corresponding nilpotent Lie group are
exactly the infra-nil-endomorphisms defined above.

Theorem 2.1 ([5, Theorem 3.4]). Let N be a connected and simply connected
nilpotent Lie group, F ⊆ Aut(N) a finite group and Γ a torsion free discrete
and uniform subgroup of N o F and assume that the holonomy group of Γ is
F . If A : N → N is an automorphism for which the map

A : N/Γ→ N/Γ, Γ · n 7→ Γ ·A(n)

is well defined (meaning that Γ ·A(n) = Γ ·A(γ · n) for all γ ∈ Γ), then

A : N o F → N o F : x 7→ φxφ−1 (conjugation in Aff(N))

is an automorphism of N o F , with A(F ) = F and A(Γ) ⊆ Γ. Hence, A is an
infra-nil-endomorphism.

Let X and Y be metric spaces. A continuous surjection f : X → Y is called
a covering map if for y ∈ Y there exists an open neighborhood Vy of y in Y
such that

f−1(Vy) =
⋃
i

Ui (i 6= i′ ⇒ Ui ∩ U ′i = ∅),

where each of Ui is open in X and f|Ui : Ui → Vy is a homeomorphism. A
covering map f : X → Y is especially called a self-covering map if X = Y .
We say that a continuous surjection f : X → Y is a local homeomorphism
if for x ∈ X there is an open neighborhood Ux of x in X such that f(Ux) is
open in Y and f|Ux : Ux → f(Ux) is a homeomorphism. It is clear that every
covering map is a local homeomorphism. Conversely, if X is compact, then a
local homeomorphism f : X → Y is a covering map (see [2, Theorem 2.1.1]).

Let X be a compact metric set and f : X → X a continuous surjection.
A point x ∈ X is said to be a nonwandering point if for any neighborhood U
of x there is an integer n > 0 such that fn(U) ∩ U 6= ∅. The set Ω(f) of all
nonwandering points is called the nonwandering set. Clearly Ω(f) is closed in
X and invariant under f .
f is said to be topologically transitive (here X may be not necessarily com-

pact) if there is x0 ∈ X such that the orbit O+(x0) = {f i(x0) : i ∈ Z≥0} is
dense in X. It is easy to check that if X is compact, a continuous surjection
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f : X → X is topologically transitive if and only if for any U, V nonempty open
sets there is n > 0 such that fn(U) ∩ V 6= ∅.

A continuous surjection f : X → X of a metric space is topologically mixing
if for nonempty open sets U, V there exists N > 0 such that fn(U)∩V 6= ∅ for
all n > N . Topological mixing implies topological transitivity.

A map f ∈ C1(M,M) is said to be C1-structurally stable if there is an open
neighborhood N (f) of f in C1(M,M) such that g ∈ N (f) implies that f and
g are topologically conjugate.

Let M be a closed smooth manifold and let C1(M,M) be the set of all C1

maps of M endowed with the C1 topology. A map f ∈ C1(M,M) is called an
Anosov endomorphism if f is a C1 regular map and if there exist C > 0 and
0 < λ < 1 such that for every x̃ = (xi) ∈Mf = {x̃ = (xi) : xi ∈M and f(xi) =
xi+1, i ∈ Z} there is a splitting

TxiM = Esxi ⊕ E
u
xi , i ∈ Z

(we show this by Tx̃M =
⋃
i(E

s
xi ⊕ E

u
xi)) so that for all i ∈ Z:

(1) Dxif(Eσxi) = Eσxi+1
where σ = s, u,

(2) for all n ≥ 0

‖ Dxif
n(v) ‖≤ Cλn ‖ v ‖ if v ∈ Esxi ,

‖ Dxif
n(v) ‖≥ C−1λ−n ‖ v ‖ if v ∈ Euxi .

If, in particular, Tx̃M =
⋃
iE

u
xi for all x̃ = (xi) ∈ Mf , then f is said to be

expanding differentiable map, and if an Anosov endomorphism f is injective,
then f is called an Anosov diffeomorphism. We can check that every Anosov
endomorphism is a TA-map, and that every expanding differentiable map is a
topological expanding map (see [2, Theorem 1.2.1]).

We define special TA-maps as follows. Let f : X → X be a continuous
surjection of a compact metric space. Define the stable and unstable sets

W s(x) = {y ∈ X : lim
n→∞

d(fn(x), fn(y)) = 0},

Wu(x̃) = {y0 ∈ X : ∃ỹ = (yi) ∈ Xf s.t. lim
i→∞

d(x−i, y−i) = 0}

for x ∈ X and x̃ ∈ Xf . A TA-map f : X → X is special if f satisfies
the property that Wu(x̃) = Wu(ỹ) for every x̃, ỹ ∈ Xf with x0 = y0. In
other words, every x has only one unstable direction. Every hyperbolic nil-
endomorphism is a special TA-covering map (See [11, Remark 3.13]). By this
and Theorem 1.3 we have the following corollary:

Corollary 2.2. A TA-covering map of a nil-manifold is special if and only if
it is conjugate to a hyperbolic nil-endomorphism.

3. Proof of Proposition 1.2

To prove Proposition 1.2, we need the following lemmas and theorems:
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Lemma 3.1 ([11, Lemma 1.5]). Let f : N/Γ → N/Γ be a self-covering map
and let f : N → N be a lift of f by the natural projection π : N → N/Γ. If f
is a TA-covering map, then f has exactly one fixed point.

Lemma 3.2 ([11, Lemma 5.4]). If f : N/Γ → N/Γ is a TA-covering map,
then Ω(f) = N/Γ.

For continuing, we need the following theorem whose proof can be found in
Theorem 3.4.4 in [2].

Theorem 3.3 (Topological decomposition theorem). Let f : X → X be a
continuous surjection of a compact metric space. If f : X → X is a TA-map,
then the following properties hold:

(1) (Spectral decomposition theorem due to Smale) The nonwandering set,
Ω(f), contains a finite sequence Bi (1 ≤ i ≤ l) of f -invariant closed
subsets such that

(i) Ω(f) =
⋃l
i=1Bi (disjoint union),

(ii) f|Bi : Bi → Bi is topologically transitive.
Such the subsets Bi are called basic sets.

(2) (Decomposition theorem due to Bowen) For a basic set B there exist
a > 0 and a finite sequence Ci (0 ≤ i ≤ a − 1) of closed subsets such
that

(i) Ci ∩ Cj = ∅ (i 6= j), f(Ci) = Ci+1 and fa(Ci) = Ci,

(ii) B =
⋃a−1
i=0 Ci,

(iii) fa|Ci : Ci → Ci is topologically mixing,

Such the subsets Ci are called elementary sets.

Proposition 3.4. If f : N/Γ → N/Γ is a TA-covering map, then N/Γ is
indeed an elementary set.

Proof. By Lemma 3.1, let f : N → N be the lift of f such that f(e) = e. By
the commuting diagram:

N
f
//

π

��

N

π

��

N/Γ
f
// N/Γ

we have,

f([e]) = f(π(e)) = π(f(e)) = π(e) = [e].

Therefore, [e] is a fixed point of f . By Lemma 3.2, Ω(f) = N/Γ. As N is
connected and π is a continuous surjection then N/Γ is connected. In the
proof of part (1) of spectral decomposition theorem, they prove that basic sets
are close and open. Hence by connectedness of Ω(f) = N/Γ, it consists of only
one basic set, say B. On the other hand, by part (2) of spectral decomposition
theorem, N/Γ = B is the union of elementary sets. There is an elementary
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set, say C, such that [e] ∈ C. Since elementary sets are disjoint, by condition
f(Ci) = Ci+1, N/Γ = B consists of only one elementary set. �

Proof. (Proof of Proposition 1.2) By Theorem 3.4, N/Γ is an elementary set
and the “a” in item (i) of part (2) of Theorem 3.3 must be equal to 1 and
by item (iii) of part (2), f is topologically mixing on N/Γ. Of course, by this
result f is topologically transitive on N/Γ. �

4. Proof of Theorem 1.3

Here we give a brief outline proof of Theorem 1.3:

Proof. Suppose that f : N/Γ → N/Γ is a special TA-covering map of an
infra-nil-manifold. Sumi [11] proved that if f is injective (or expanding), then
f conjugates to a hyperbolic infra-nil-automorphism (or an expanding infra-
nil-endomorphism). By Dekimpe [5], the main results of [11] are incorrect
for infranil-manifolds. But if we consider nil-manifolds instead of infra-nil-
manifolds, we can repair main results. So, we consider them for nil-manifolds.
So consider the case f is not injective nor expanding, and A : N/Γ → N/Γ
is the unique nil-endomorphism homotopic to f (see [8], for details), and let
f,A : N → N be the automorphisms which are lifts of f and A, respectively,
by the natural projection π. Sumi [11] proved that there is a unique continuous
surjective map h : N → N such that

A ◦ h = h ◦ f.

So h is a so-called semi-conjugacy between f and A. We should find a conjugacy
between f and A.

For continuous maps f and g of N we define D(f, g) = sup{D(f(x), g(x)) :
x ∈ N} where D denotes a left invariant, Γ-invariant Riemannian distance
for N . Notice that D(f, g) is not necessary finite. Since DeA is hyperbolic,
the Lie algebra Lie(N) of N splits into the direct sum Lie(N) = Ese ⊕ Eue of
subspaces Ese and Eue such that DeA(Ese) = Ese , DeA(Eue ) = Eue and there are
c > 1, 0 < λ < 1 so that for all n ≥ 0

||DeA
n
(v)|| ≤ cλn||v|| (v ∈ Ese),

||DeA
−n

(v)|| ≤ cλn||v|| (v ∈ Eue ),

where || · || is the Riemannian metric. Let L
σ
(e) = exp(Eσe ) (σ = s, u) and let

L
σ
(x) = x · Lσ(e)(σ = s, u) for x ∈ N . Since left translations are isometries

under the metric D, it follows that for all x ∈ N

L
s
(x) = {y ∈ N : D(A

i
(x), A

i
(y))→ 0 (i→∞)},

L
u
(x) = {y ∈ N : D(A

i
(x), A

i
(y))→ 0 (i→ −∞)}.
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Let x ∈ N , we define the stable set and unstable sets of x for f and A as
follow (for more details see [2]):

W
s
(x) = {y ∈ N : lim

i→∞
D(f

i
(x), f

i
(y)) = 0},

W
u
(x, e) = {y ∈ N : lim

i→−∞
D(f

i
(x), f

i
(y)) = 0},

where e = (. . . , e, e, e, . . .).

Lemma 4.1 ([11, Lemma 2.4]). For the semi-conjugacy h, we have the follow-
ing properties:

(1) There exists K > 0 such that D(h ◦ γ(x), γ ◦ h(x)) < K for x ∈ N and
γ ∈ Γ.

(2) For any λ > 0, there exists L ∈ N such that D(h ◦ γ(x), γ ◦ h(x)) < λ

for x ∈ N and γ ∈ AL∗ (Γ).

(3) For x ∈ N and γ ∈
⋂∞
i=0A

i

∗(Γ), we have h ◦ γ(x) = γ ◦ h(x).

(4) For x ∈ N and γ ∈ Γ, we have h ◦ γ(x) ∈ Ls(γ ◦ h(x)).

Remark 4.2. Since h is D-uniformly continuous then h(W
s
(x)) = L

s
(h(x)) and

h(W
u
(x; e)) = L

u
(h(x)).

Lemma 4.3. The following statements hold:

(1) γ(W
s
(x)) = W

s
(γ(x)) for γ ∈ Γ and x ∈ N ,

(2) γ(W
u
(x; e)) = W

u
(γ(x); e) for γ ∈ Γ and x ∈ N ,

(3) γ(L
s
(x)) = L

s
(γ(x)) for γ ∈ Γ and x ∈ N ,

(4) γ(L
u
(x)) = L

u
(γ(x)) for γ ∈ Γ and x ∈ N ,

(5) If x ∈Wu
(e; e), then W

u
(x; e) = W

u
(e; e),

(6) If x ∈ Lu(e), then L
u
(x) = L

u
(e).

Proof. For proof, see [8], Lemmas 3.13, 3.14 and 4.2. �

Lemma 4.4 ([2, Lemma 8.6.2]). For ε > 0 there is δ > 0 such that if D(x, y) <

δ, x, y ∈ N , then W
s
(x) ⊂ Uε(W

s
(y)) and W

u
(x; e) ⊂ Uε(W

u
(y; e)). Where

for a set S, Uε(S) = {y ∈ N : D(y, S) < ε}.

Remark 4.5. There is a δK > 0 such that D(h(x), x) < δK for x ∈ N , we have
(see [2] page 270 (8.5))

W
s
(x) ⊂ UδK (L

s
(h(x))) and W

u
(x; e) ⊂ UδK (L

u
(h(x))).

For simplicity, let Γf =
(
W

u
(e; e) o {idAut(N)}

)
∩ Γ and ΓA =

(
L
u
(e) o

{idAut(N)}
)
∩ Γ.

Lemma 4.6. The following statements hold:

(1) ΓA and Γf are subgroups of Γ.

(2) Γf ⊂ ΓA.

(3) h(γ(v)) = γ(h(v)) for each γ ∈ Γf and v ∈Wu
(e; e).
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(4) If W
u
(γ1(e); e) = W

u
(γ2(e); e) for some γ1, γ2 ∈ Γ, then we have

γ1(h(γ−1
1 (x)) = γ2(h(γ−1

2 (x)) for x ∈Wu
(γ1(e); e).

Proof. (1) Let x, y ∈ Lu(e), since Ai(e) = e for all i, then by definition,

(4.1)

lim
i→−∞

D(Ai(x), e) = lim
i→−∞

D(Ai(x), Ai(e)) = 0,

lim
i→−∞

D(Ai(y), e) = lim
i→−∞

D(Ai(y), Ai(e)) = 0.

As D is left invariant we have

0 ≤ lim
i→−∞

D(Ai(xy−1), Ai(e)) = lim
i→−∞

D(Ai(x)Ai(y−1), e)

= lim
i→−∞

D(Ai(x)A−i(y), Ai(x)A−i(x))

(D is left invariant) = lim
i→−∞

D(A−i(y), A−i(x))

≤ lim
i→−∞

D(A−i(y), e) +D(e,A−i(x))

(equation (4.1)) = lim
i→−∞

D(Ai(y), e) +D(Ai(x), e) = 0.

Thus xy−1 ∈ Lu(e) and L
u
(e) is a subgroup of N . So

(
L
u
(e)o {idAut(N)}

)
∩Γ

is a subgroup of Γ.
For the second part, let γ1, γ2 ∈ Γf . Since Γ is a group we have γ1γ

−1
2 ∈ Γ.

Now consider that γ1, γ2 ∈
(
W

u
(e; e) o {idAut(N)}

)
. There exist x1, x2 ∈

W
u
(e; e) such that γ1 = (x1, idN ) and γ2 = (x2, idN ). Therefore,

x1W
u
(e; e) = γ1(W

u
(e; e))

(Lemma 4.3, part (2)) = W
u
(γ1(e); e)

= W
u
(x1; e)

(Lemma 4.3, part (5)) = W
u
(e; e).

Similarly, x2W
u
(e; e) = W

u
(e; e). So we have x1W

u
(e; e) = x2W

u
(e; e) and

then x1x
−1
2 ∈Wu

(e; e). Finally,

γ1γ
−1
2 = (x1, idN )(x2, idN )−1

= (x1, idN )(x−1
2 , idN )

= (x1x
−1
2 , idN ) ∈Wu

(e; e) o {idAut(N)},

and we have the result.
(2) Take (x, α) = γ ∈ Γf (x ∈ N,α ∈ C), such that γ /∈ ΓA. So, x /∈ Lu(e)

and for each n ∈ Z, n 6= 0, xn /∈ Lu(e). By part (1), Remark 4.5 and the fact

that h(e) = e for all n ∈ Z, we have xn ∈ Wu
(e; e) ⊂ UδK (L

u
(e)), which is

impossible.
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(3) Let γ = (x, idN ) for some x ∈ N and v ∈Wu
(e; e). We have

γ(v) ∈ γ(W
u
(e; e))

(Lemma 4.3, part (2)) = W
u
(γ(e); e)

= W
u
(x; e)

(Lemma 4.3, part (5)) = W
u
(e; e),

so,

h(γ(v)) ∈ h(W
u
(e; e))

(Remark 4.2) = L
u
(e).

By part (2), γ ∈ ΓA. Thus

γ(h(v)) ∈ γ(h(W
u
(e; e))

(Remark 4.2) = γ(L
u
(e))

(Lemma 4.3, part (4)) = (L
u
(γ(e)))

= L
u
(x)

(Lemma 4.3, part (6)) = L
u
(e).

Again by Lemma 4.3 and last part of the above relation, L
u
(γ(h(v))) = L

u
(e),

and
h(γ(v)) ∈ Lu(e) = L

u
(γ(h(v))).

On the other hand, by part (4) of Lemma 4.1, h(γ(v)) ∈ Ls(γ(h(v))). Since

L
u
(γ(h(v))) ∩ Ls(γ(h(v))) = {γ(h(v))} (see [11, Lemma 2.1]), then h(γ(v)) =

γ(h(v)).

(4) We have x ∈ Wu
(γ1(e); e) = γ1(W

u
(e; e)). Thus, γ−1

1 (x) ∈ Wu
(e; e).

Similarly, γ−1
2 (x) ∈Wu

(e; e). Now, by part (3),

γ1

(
h(γ−1

1 (x)
)

= h
(
γ1(γ−1

1 (x))
)

= h(x)

= h
(
γ2(γ−1

2 (x))
)

= γ2

(
h(γ−1

2 (x)
)
. �

According to part (4) of Lemma 4.6, we can define a map

h
′

:
⋃
γ∈Γ

W
u
(γ(e); e)→

⋃
γ∈Γ

L
u
(γ(e))

by

h
′
(x) = γ(h(γ−1(x))) x ∈Wu

(γ(e); e) (γ ∈ Γ).

Next lemma shows some properties of h
′
:

Lemma 4.7. The following statements hold:
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(1) A ◦ h′ = h
′ ◦ f on

⋃
γ∈ΓW

u
(γ(e); e),

(2) D(h
′
, id|

⋃
γ∈Γ W

u
(γ(e);e)) <∞,

(3) h
′
(γ(e)) = γ(e) for γ ∈ Γ,

(4) if x ∈Wu
(γ(e); e)(γ ∈ Γ), then h

′
(x) ∈ Lu(γ(e)) and h

′
(x) ∈ Ls(h(x)),

(5) if y ∈W s
(x) for x, y ∈

⋃
γ∈ΓW

u
(γ(e); e), then h

′
(y) ∈ Ls(h′(x)).

Proof. For proof, see [8], Lemma 4.4. �

Lemma 4.8. h
′

is D-uniformly continuous.

Proof. For proof, see [8], Lemma 4.7. �

Lemma 4.9.
⋃
γ∈ΓW

u
(γ(e); e) is dense in N .

Proof. For proof, see [8], Lemma 4.13. �

By Lemma 4.8, h
′
is extended to a continuous map h̃ : N → N . From Lemma

4.7(1), (2) and (3), and uniqueness of h, we have h = h̃ and h(γ(e)) = γ(e) for
all γ ∈ Γ.

Lemma 4.10. For all γ ∈ Γ and x ∈ N , h(γ(x)) = γ(h(x)).

Proof. According to Lemma 4.1(4), we have

(4.2) h(γ(x)) ∈ Ls(γ(h(x))).

Suppose that x ∈
⋃
γ∈ΓW

u
(γ(e); e). Then there is γx ∈ Γ such that x ∈

W
u
(γx(e); e). For each γ ∈ Γ we have

γ(x) ∈ h
(
W

u
(γx(e); e)

)
= W

u(
γ(γx(e)); e

)
.

Thus

(4.3)

h(γ(x)) ∈ h
(
W

u(
γ(γx(e)); e

))
(by Remark 4.2) = L

u(
h(γ(γx(e)))

)
= L

u(
γ(γx(e))

)
.

On the other hand,

(4.4)

γ(h(x)) ∈ γ
(
h(W

u
(γx(e); e))

)
(by Remark 4.2) = γ

(
L
u
(h(γx(e)))

)
= γ

(
L
u
(γx(e))

)
(by Lemma 4.3, part (4)) = L

u
(γ(γx(e))).

By (4.4), we have L
u(
γ(γx(e))

)
= L

u(
γ(h(x))

)
. Therefore, by (4.3) we have

(4.5) h(γ(x)) ∈ Lu
(
γ(h(x))

)
.
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By (4.2) and (4.5) we have

(4.6) h(γ(x)) ∈ Lu
(
γ(h(x))

)
∩ Ls

(
γ(h(x))

)
= {γ(h(x))}.

Thus for each x ∈
⋃
γ∈ΓW

u
(γ(e); e) we have h(γ(x)) = γ(h(x)). Since h is

continuous and
⋃
γ∈ΓW

u
(γ(e); e) is dense in N , we have the desired result. �

Hence, h induces a homeomorphism h : N/Γ→ N/Γ such that h◦π = π ◦h,
i.e., the following diagram commutes:

N
h //

π

��

N

π

��

N/Γ
h
// N/Γ

Now, it is easy to see that h is the desired conjugacy between f and A. �

5. Proof of Theorems 1.4 and 1.5

From now on suppose that f ∈ C1(Tn,Tn). To prove Theorem 1.4, we need
the following theorems:

Zhang [12], by use of the fact that C1 Anosov endomorphisms, which are
not injective nor expanding, are not C1-structurally stable, showed that:

Theorem 5.1 ([12], Main Theorem). Suppose n ≥ 2. Then for generic f ∈
A∗(Tn), f is not topologically conjugate to any hyperbolic toral endomorphism.

Micena and Tahzibi [7], proved that:

Theorem 5.2 ([7], Theorem 1.4). Let M be a closed manifold and f : M →M
topologically transitive endomorphism. Then

(1) either f is a special Anosov endomorphism
(2) or there exists a residual subset R ⊂ M such that for every x ∈ R, x

has infinitely many unstable directions.

Proof. (Proof of Theorem 1.4) We know that Tn is a case of nil-manifold.
Clearly, every C1 Anosov endomorphism on a closed manifold is a TA-covering
map.

According to Theorem 5.1, for generic f ∈ A∗(Tn), f is not topologically
conjugate to any hyperbolic toral endomorphism. Hence by Theorem 1.3 for
Tn (n ≥ 2), f is not special.

On the other hand Proposition 1.2 says that f is topologically transitive.
Finally, by Theorem 5.2 and the fact that f is not special, there exists a residual
subset R ⊂ Tn such that for every x ∈ R, x has infinitely many unstable
directions with respect to f . �
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End of the proof of Theorem 1.5 (Main Theorem). Let Λ ⊂ A∗(Tn) be
the generic set gotten in Theorem 1.4. According to Baire category theorem,
Λ is dense in A∗(Tn). Thus if f ∈ A∗(Tn), then for every neighborhood U of
f there is at least one f ∈ Λ which is not special.

Acknowledgements. The authors would like to thank the anonymous referee
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