DOI QR코드

DOI QR Code

MYERS' THEOREM FOR COMPLETE RIEMANNIAN HYPERSURFACES

  • Fatemi, Seyed Hamed (Department of Pure Mathematics Faculty of Math. Sciences Tarbiat Modares University)
  • 투고 : 2018.04.22
  • 심사 : 2018.10.24
  • 발행 : 2019.07.31

초록

In this paper we study the Myers' theorem for orientable Riemannian hypersurfaces under some restrictions on the mean curvature, the second-order mean curvature, or the divergence of the shape operator and give some estimates for the diameter of such hypersurfaces.

키워드

참고문헌

  1. L. J. Alas, P. Mastrolia, and M. Rigoli, Maximum principles and geometric applications, Springer Monographs in Mathematics, Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-2437-5
  2. M. P. Cavalcante, J. Q. Oliveira, and M. S. Santos, Compactness in weighted manifolds and applications, Results Math. 68 (2015), no. 1-2, 143-156. https://doi.org/10.1007/s00025-014-0427-x
  3. F. Fang, X.-D. Li, and Z. Zhang, Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 563-573. https://doi.org/10.5802/aif.2440
  4. A. Futaki, H. Li, and X.-D. Li, On the rst eigenvalue of the Witten-Laplacian and the diameter of compact shrinking solitons, Ann. Global Anal. Geom. 44 (2013), no. 2, 105-114. https://doi.org/10.1007/s10455-012-9358-5
  5. X.-D. Li, Liouville theorems for symmetric diusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9) 84 (2005), no. 10, 1295-1361. https://doi.org/10.1016/j.matpur.2005.04.002
  6. M. Limoncu, The Bakry-Emery Ricci tensor and its applications to some compactness theorems, Math. Z. 271 (2012), no. 3-4, 715-722. https://doi.org/10.1007/s00209-011-0886-7
  7. O. Munteanu and J. Wang, Smooth metric measure spaces with non-negative curvature, Comm. Anal. Geom. 19 (2011), no. 3, 451-486. https://doi.org/10.4310/CAG.2011.v19.n3.a1
  8. S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401-404. http://projecteuclid.org/euclid.dmj/1077492655 https://doi.org/10.1215/S0012-7094-41-00832-3
  9. H. Tadano, Remark on a diameter bound for complete Riemannian manifolds with positive Bakry-Emery Ricci curvature, Diffierential Geom. Appl. 44 (2016), 136-143. https://doi.org/10.1016/j.difgeo.2015.11.001
  10. G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377-405. https://doi.org/10.4310/jdg/1261495336
  11. J.-Y. Wu, A note on the splitting theorem for the weighted measure, Ann. Global Anal. Geom. 43 (2013), no. 3, 287-298. https://doi.org/10.1007/s10455-012-9346-9
  12. J.-Y. Wu, Myers' type theorem with the Bakry-Emery Ricci tensor, Ann. Global Anal. Geom. 54 (2018), no. 4, 541-549. https://doi.org/10.1007/s10455-018-9613-5
  13. S. Zhang, A theorem of Ambrose for Bakry-Emery Ricci tensor, Ann. Global Anal. Geom. 45 (2014), no. 3, 233-238. https://doi.org/10.1007/s10455-013-9396-7