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MYERS’ THEOREM FOR COMPLETE RIEMANNIAN

HYPERSURFACES

Seyed Hamed Fatemi

Abstract. In this paper we study the Myers’ theorem for orientable

Riemannian hypersurfaces under some restrictions on the mean curvature,
the second-order mean curvature, or the divergence of the shape operator

and give some estimates for the diameter of such hypersurfaces.

1. Introduction

A natural problem in the geometry of hypersurfaces is to explore the inter-
play between extrinsic and intrinsic geometric data of the hypersurfaces and
their geometric and topological properties. A famous result in this direction
is the Myers’ theorem, which states that if the Ricci tensor of a manifold has
a lower bound (n − 1)a > 0, then the manifold is compact and its diameter
is less than π√

a
[8]. We are interested in the influences of the extrinsic geo-

metric data on the compactness and diameter of an orientable Riemannian
hypersurface; including the mean curvature, the second-order mean curvature,
the divergence of the shape operator, and the sectional curvature of the ambi-
ent manifold. This can be applied also to the space-like hypersurfaces in the
Lorentzian manifolds.

Myers’ theorem has been generalized in many ways. One of the most in-
stances was done using the Bakry-Emery Ricci tensor. For a Riemannian
manifold (M, g) and f ∈ C∞(M), the Bakry-Emery Ricci tensor is defined
by Ricf = Ric + Hessf . This is a natural and good substitute for the Ricci
tensor. Many interesting results in differential geometry were proved and ex-
tended for this tensor in weighted manifolds [10]. Some of the most well-known
results in this regard are Myers’ theorem [2–4,6,10], volume comparison theo-
rems [7,10,11], eigenvalue estimates [4,11], Li-Yau Harnack inequalities [5,13],
Cheeger-Gromoll splitting theorem [3,10,11], Betti number estimate, etc.

First, we state a generalization of Myers’ theorem which is proved by Wei
and Wylie [10].
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Theorem 1.1. Let (Mn, g) be a complete and connected Riemannian manifold,
f ∈ C∞(M), and H,K > 0 be constants. If |f | ≤ K satisfies the following
inequality

Ricf = Ric+Hessf ≥ (n− 1)Hg > 0,

then M is compact and its diameter satisfies

diam(M) ≤ π√
H

+
4K

(n− 1)H
.

Limoncu obtained a better estimate for the diameter as follows [6].

Theorem 1.2. Let (Mn, g) be a complete and connected Riemannian manifold,
H,K > 0 some constants, and V a smooth vector field on M with |V | < K. If
Ric+ LV g ≥ (n− 1)Hg > 0, then M is compact and

diam(M) ≤ 4π

(n− 1)H

(√
2K +

√
2K2 + (n− 1)

2
H

)
.

If we set V = 1
2∇f , then the above condition yields

Ric+Hessf ≥ (n− 1)Hg > 0,

with |∇f | ≤ 4K2 and

diam(M) ≤ π

(n− 1)H

(√
K

2
+

√
K

2
+ (n− 1)

2
H

)
.

He also obtained the following result in [6].

Theorem 1.3. Let (Mn, g) be a complete and connected Riemannian manifold,
and p be a fixed point, and let r(x) = dist(x, p). If f ∈ C∞(M) satisfies

Ricf = Ric+Hessf ≥ (n− 1)Hg > 0

for some constants H,K > 0 with |∇f |2 ≤ K
r(x)2

, then M is compact and its

diameter satisfies

diamp(M) ≤ π
√

4
√
K + n− 1

(n− 1)H
.

Theorem 1.2 has been improved by Wu in [12]. Tadano proved the following
theorem in [9].

Theorem 1.4. Let (M, g) be a complete and connected Riemannian manifold
of dimension n and f ∈ C∞(M). If |f | ≤ K satisfies

Ricf = Ric+Hessf ≥ (n− 1)Hg > 0

for some constants H,K > 0, then M is compact and

diam(M) ≤ π√
H

√
1 +

2
√

2K

n− 1
.
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The main goal of this paper is to show how the geometric data of a com-
plete connected orientable hypersurface can determine its compactness. This
data consists of the mean curvature H, the second-order mean curvature H2,
the divergence of the shape operator, and the constantness (non-constantness)
of the sectional curvature of the ambient manifold. We are also interested in
parameters affecting the compactness when the ambient manifold doesn’t have
constant sectional curvature. We extend Theorems 1.2, 1.3 and 1.4 to hyper-
surfaces; and obtain new results about the diameter of these hypersurfaces.
We use the ∞-Bakry-Emery Ricci tensor Ricf = Ric + Hessf by replacing
a certain function on the hypersurface with the energy function f . The func-
tion that we want to replace should carry the extrinsic geometric data of the
hypersurfaces, hence we use the functions 1

2 |A|
2
. Imposing some restrictions

on both of the mean curvature and the second-order mean curvature, or the
divergence of the shape operator, we get certain estimates of the diameter of
the hypersurface.

Our main results are as follows. The first is a compactness result by restric-
tion on the shape operator.

Theorem 1.5. Let (Σn, gΣ) ⊆ Mn+1(c) (c is the sectional curvature of the
ambient manifold) be a complete orientable Riemannian hypersurface with the
shape operator A; and let p ∈ Σ be a fixed point, and r(x) := distΣ(p, x).
If for some constants K, d > 0 and integrable function g : R → R with(∫ +∞

0
g2(r)dr

) 1
2 ≤ K we have∣∣div(A2)−AdivA

∣∣2(r(x)) ≤ g(r) and Ric 1
2 |A|

2 ≥ ((n− 1)d) gΣ,

then

diamΣ ≤ 2
√
θ0,

where θ0 is the first positive root of the quartic equation

−(n− 1)du4 +

√
3

8
Ku3 + nπ2 = 0.

We prove the following compactness result by restricting on the mean cur-
vature H and the second-order mean curvature H2.

Theorem 1.6. Let (Σn, gΣ) ⊂ Mn+1 be a complete connected orientable hy-
persurface with the shape operator A, p ∈ Σ be a fixed point, and r(x) :=
distΣ(p, x); and let H2(r(x)) ≤ g1(r), where g1 : R → R is an integrable func-

tion with
(∫ +∞

0
g2

1(r)dr
) 1

2 ≤ K1. If for some constant d > 0, Ric 1
2 |A|

2 ≥
((n− 1)d) gΣ, and one of the following conditions holds,

a) HessH2 ≥ βgΣ and (n − 1)d + n(n−1)
2 β > 0 for some constant β ≥ 0;

(in this item the condition (n− 1)d > 0 is superfluous.)
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b) |∇H2(r(x))| ≤ g2(r), where g2 : R → R is an integrable function with(∫ +∞
0

g2
2(r)dr

) 1
2 ≤ K2;

c) H2
2 (r(x)) ≤ g2(r), where g2 : R → R is an integrable function with∫ +∞

0
g2(r)dr ≤ K2,

then Σ is compact and its diameter is approximated by

diamΣ ≤ 2
√
θ0,

where θ0 is the first positive root of p(u). The polynomial p(u) corresponding
to each condition is as follows,

a) p(u) = −
(

(n− 1)d+ n(n−1)β
2

)
u5 + (n− 1)π2u+

√
2n2π2K1;

b) p(u) = −(n− 1)du5 + n(n−1)√
2

K2πu
2 + (n− 1)π2u+

√
2n2π2K1;

c) p(u) = −(n− 1)du8 +K2u
6 + (n− 1)π2u4 +

√
2n2π2K1u

3 + 2π4.

Note that, in Theorem 3.1 when a hypersurface Σn ⊂Mn+1 is compact and
the ambient manifold M has a constant sectional curvature, we get an estimate

for its diameter by putting a restriction on the mean value of
∣∣div(A2)−AdivA

∣∣4
on every maximal radial geodesic. Also in Theorem 3.4 we get an estimate of
the diameter of a compact hypersurface, by putting some restrictions on the
mean values of H4 and H2

2 on every maximal radial geodesic.

2. Preliminaries

In this section, we compute Hess( 1
2 |A|

2
) by two methods. The first method

is simple and doesn’t differ if the sectional curvature of the ambient manifold
is constant or not. The second method, shows the parameters which affect
Hess( 1

2 |A|
2
) when the ambient manifold doesn’t have a constant sectional cur-

vature. In order to do this, we present some definitions and lemmas.

Definition ([1]). Let Σn ⊂ Mn+1 be an orientable Riemannian hypersurface
with the shape operator A, and let {ep} be a local orthonormal frame field on
Σ. Then we define:

a) The mean curvature of Σn, by 1
nTrace(A) and denote it by H.

b) The second-order mean curvature of Σn, by 2
n(n−1)

∑
i<j λiλj where

A = diag(λ1, . . . , λn), and denote it by H2.
c) The scalar curvature of Σn at a point x, by

∑
i<j K(ei, ej), where K is

the sectional curvature of Σn and {ei} is a basis of TxΣ; and we denote
it by scal(x).

d) The divergence of the shape operator A, by
∑
p

(
∇epA

)
ep, and denote

it by divA.
e) The square of the norm of the shape operator, by |A|2 := Trace(A.At).

Definition. Let Σn ⊂Mn+1 be an orientable Riemannian hypersurface, N be
a unit normal vector field on Σn, A be the corresponding shape operator, and
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R̄ be the curvature tensor of the ambient manifold M ; and let {ep} be a local

orthonormal frame field on Σ. We define the tensor RicA by

RicA(N,X) :=
∑

p

〈
R̄(N,Aep)ep, X

〉
.

To compute the gradient of the function 1
2 |A|

2
, we need the following lemma.

Lemma 2.1. Let Σn ⊂Mn+1 be an orientable Riemannian hypersurface with
the shape operator A, and X ∈ Γ(TΣ) be a smooth vector field on Σn. Then

a) 〈(∇XA), A〉=Trace((∇XA)A)=
〈
div(A2)−AdivA,X

〉
+RicA(N,X);

b) 〈divA,X〉 = n∇XH −Ric(X,N).

Proof. For part (a), suppose that {ep} is a local orthonormal frame field on Σ,
by Codazzi equation

(∇XA)Y = (∇YA)X +
(
R̄(Y,X)N

)T
.

So

〈(∇XA), A〉 = Trace((∇XA)A) =
∑

p
〈(∇XA)Aep, ep〉

=
∑

p
〈(∇XA) ep, Aep〉 =

∑
p

〈(
∇epA

)
X − R̄(X, ep)N,Aep

〉
=
∑

p

〈(
∇epA

)
Aep, X

〉
+
∑

p

〈
R̄(N,Aep)ep, X

〉
=
∑

p

〈(
∇epA2

)
ep, X

〉
−
〈
A
(∑

p

(
∇epA

)
ep

)
, X
〉

+RicA(N,X)

=
〈
div(A2)−AdivA,X

〉
+RicA(N,X).

For (b) see [1]. �

Corollary 2.2. Let Σn ⊂Mn+1 be an orientable Riemannian hypersurface, N
be a unit normal vector field on Σn, and A be the corresponding shape operator.
Then for any vector field X ∈ Γ(TΣ) we have Ric(X,N) = 0. Therefore

a) divA = n∇H;
b) if the mean curvature is constant, then divA = 0.

Now, we compute Hess(|A|2) by the following proposition.

Proposition 2.3. Let Σn ⊂Mn+1 be an orientable Riemannian hypersurface,
N be a unit normal vector field on Σn, and A be the corresponding shape
operator. For the smooth vector fields X,Y ∈ Γ(TΣ) we have

a)
1

2
Hess(|A|2)(X,Y ) = n2 〈∇H,X〉 〈∇H,Y 〉+ n2HHessH(X,Y )

− n(n− 1)

2
HessH2(X,Y );
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b) If Y is a parallel vector field, then

1

2
Hess(|A|2)(X,Y ) =

〈
∇X

(
div(A2)−AdivA

)
, Y
〉

+X.
(
RicA(N,Y )

)
.

Proof. For (a), by |A|2 = (nH)2 − n(n− 1)H2, we have

∇(
1

2
|A|2) = n2H∇H − n(n− 1)

2
∇H2.

So

1

2
Hess(|A|2)(X,Y ) = n2 〈∇H,X〉 〈∇H,Y 〉+ n2HHessH(X,Y )

− n(n− 1)

2
HessH2(X,Y ).

For (b), suppose that x is an arbitrary point. For simplicity, suppose that
{ep} is a local orthonormal frame field on Σ such that ∇epeq(x) = 0, and
X,Y ∈ Γ (TΣ) are parallel vector fields. Then

∇(
1

2
|A|2) =

∑
p

(
ep.|A|2

)
ep =

1

2

∑
p

〈
∇epA,A

〉
ep

=
∑

p

(〈
div(A2)−AdivA, ep

〉
+RicA(N, ep)

)
ep.

So

1

2
Hess(|A|2)(X,Y ) =

∑
p

〈
∇X

[〈
div(A2)−AdivA, ep

〉
ep
]
, Y
〉

+
∑

p

〈
∇X

[
RicA(N, ep)ep

]
, Y
〉

=
∑

p

〈(
X.
〈
div(A2)−AdivA, ep

〉)
ep, Y

〉
+X.

∑
p

〈(
RicA(N, ep)

)
ep, Y

〉
=
∑

p

〈〈
∇X

(
div(A2)−AdivA

)
, ep
〉
ep, Y

〉
+X.

∑
p

〈(
RicA(N, ep)

)
ep, Y

〉
=
〈
∇X

(
div(A2)−AdivA

)
, Y
〉

+X.
(
RicA(N,

∑
p
〈ep, Y 〉ep)

)
=
〈
∇X

(
div(A2)−AdivA

)
, Y
〉

+X.
(
RicA(N,Y

)
. �

Corollary 2.4. Let Σn ⊂Mn+1 be an orientable Riemannian hypersurface, N
be a unit normal vector field on Σn, and A be the corresponding shape operator.
If M has constant sectional curvature, then

Hess(
1

2
|A|2)(X,Y ) = n2 〈∇H,X〉 〈∇H,Y 〉+ n2HHessH(X,Y )

−Hess (scal) (X,Y ).
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Proof. Suppose that λi’s are eigenvalues of A. By the assumptions, M has a
constant sectional curvature, so by Gauss equation, we have λiλj = K(ei, ej)−
c. Thus

n(n− 1)

2
H2 =

∑
i<j

λiλj =
∑

i<j
K(ei, ej)− c = scal − n(n− 1)

2
c.

So n(n−1)
2 HessH2 = Hess(scal). �

Proposition 2.5. Let Σn ⊂Mn+1 be an orientable Riemannian hypersurface,
N be a unit normal vector field on Σn, and A be the corresponding shape
operator. Then for a parallel vector field Y ∈ Γ(TΣ) we have

X.
(
RicA(N,Y )

)
=
∑

p

〈(
∇̄XR̄

)
(N,Aep)ep, Y

〉
−RicA(AX,Y )

+Ric(∇XA)(N,Y ) +
〈
R̄(N,A2X)N,Y

〉
+ 〈AX,Y 〉RicA(N,N).

Proof. Suppose that x is an arbitrary point; for simplicity, assume that {ep} is
a local orthonormal frame field with ∇eiej(x) = 0. So

X.
(
RicA(N,Y )

)
=
∑

p

(〈(
∇̄XR̄

)
(N,Aep)ep, Y

〉
+
〈
R̄(∇̄XN,Aep)ep, Y

〉)
+
∑

p

(〈
R̄(N, ∇̄X(Aep))ep, Y

〉
+
〈
R̄(N,Aep)∇̄Xep, Y

〉)
+
∑

p

〈
R̄(N, (Aep))ep, ∇̄XY

〉
=
∑

p

(〈(
∇̄XR̄

)
(N,Aep)ep, Y

〉
+
〈
R̄(−AX,Aep)ep, Y

〉)
+
∑

p

〈
R̄(N, (∇XA) ep + S (X,Aep))ep, Y

〉
+
∑

p

(〈
R̄(N,Aep)S (X, ep) , Y

〉
+
〈
R̄(N, (Aep))ep, S (X,Y )

〉)
=
∑

p

〈(
∇̄XR̄

)
(N,Aep)ep, Y

〉
−RicA(AX,Y )

+Ric(∇XA)(N,Y ) + 0 +
∑

p

〈
R̄(N,Aep) 〈AX, ep〉N,Y

〉
+ 〈AX,Y 〉

∑
p

〈
R̄(N, (Aep))ep, N

〉
=
∑

p

〈(
∇̄XR̄

)
(N,Aep)ep, Y

〉
−RicA(AX,Y )

+Ric(∇XA)(N,Y ) +
〈
R̄(N,A2X)N,Y

〉
+ 〈AX,Y 〉RicA(N,N),

where S (X,Y ) is the second fundamental form of Σ. �

By the following definition, we recall an extension of Ricci tensor which is
called the ∞-Bakry-Emery Ricci tensor. This tensor field with the weighted



870 S. H. FATEMI

Laplacian ∆f = ∆ − 〈∇f,−〉 plays an important role in the study of the
geometry of weighted manifolds. We use this tensor field for hypersurfaces and
replace 1

2 |A|
2

with f , where A is the shape operator of the hypersurface.

Definition ([10]). The ∞-Bakry-Emery Ricci tensor is defined by

Ricf = Ric+Hessf.

So we define the tensor Ric 1
2 |A|

2 as

Ric 1
2 |A|

2 := Ric+Hess(
1

2
|A|2).

Corollary 2.6. Let Σn ⊂Mn+1 be an orientable Riemannian hypersurface, N
be a unit normal vector field on Σn, and A be the corresponding shape operator.
Then for any parallel smooth vector fields X,Y ∈ Γ(TΣ) we have

Ric 1
2 |A|

2(X,Y ) = Ric(X,Y ) +Hess(
1

2
|A|2)(X,Y )

= Ric(X,Y ) +
〈
∇X

(
div(A2)−AdivA

)
, Y
〉

+X.
(
RicA(N,Y )

)
= Ric(X,Y ) + n2 〈∇H,X〉 〈∇H,Y 〉+ n2HHessH(X,Y )

− n(n− 1)

2
HessH2(X,Y ).

Remark 2.7. Let Σn ⊂Mn+1 be an orientable Riemannian hypersurface, N be
a unit normal vector field on Σn, and A be the corresponding shape operator.
Then for smooth vector fields X,Y ∈ Γ(TΣ), the followings are well-known.

a) Ric(X,Y ) = Ric(X,Y )−
〈
R̄(X,N)N,Y

〉
+ nH 〈AX,Y 〉 − 〈AX,AY 〉 .

So when the ambient manifold M has constant sectional curvature c,
we have

Ric(X,Y ) = (n− 1) c 〈X,Y 〉+ nH 〈AX,Y 〉 − 〈AX,AY 〉 .
b) 2scal = 2scal − 2Ric(N,N) + n(n− 1)H2.

In the above items, Ric and scal are the Ricci and scalar curvature of Σ; and
Ric and scal are the Ricci and scalar curvature of M .

3. Myers’ theorem for Riemannian hypersurfaces

In this section, we prove Theorems 1.5 and 1.6; and show some of their
consequences. First, we extend Theorem 1.3. In [6] the author used the modi-
fied Laplacian to get the result; here we get another estimate with a different
approach.

Proof of Theorem 1.5. At first, note that the ambient manifold has a constant
sectional curvature, so for any vector field X, we have RicA(N,X) ≡ 0. Thus

Ric 1
2 |A|

2(X,Y ) = Ric(X,Y ) +
1

2
Hess(|A|2)(X,Y )
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= Ric(X,Y ) +
〈
∇X

(
div(A2)−AdivA

)
, Y
〉
.

Now suppose that γ(t) is the unit minimal geodesic from the fixed point p
to an arbitrary point x ∈ Σ\cut(p) with length l. By considering a parallel
orthonormal frame {E1 = γ′, E2, . . . , En} along γ, and the smooth function
f(t) = sin(πtl ), and the index form

I(fEi, fEi) =

∫ l

0

(
|f ′Ei|

2 − 〈R(fEi, γ
′)γ′, fEi〉

)
dt,

we have ∑n

i=2
I(fEi, fEi) =

∫ l

0

(
(n− 1)f ′

2 − f2Ric(γ′, γ′)
)
dt.

For simplicity, we set V = div(A2)−AdivA, so

Ric 1
2 |A|

2(γ′, γ′) = Ric(γ′, γ′) +
d

dt
〈V, γ′〉.

By the hypothesis Ric 1
2 |A|

2(γ′, γ′) ≥ (n− 1)d, so

−Ric(γ′, γ′) ≤ −(n− 1)d+
d

dt
〈V, γ′〉.

Thus∑n

i=2
I(fEi, fEi) =

∫ l

0

(
(n− 1)f ′

2 − f2Ric(γ′, γ′)
)
dt

≤
∫ l

0

(
(n− 1)f ′

2 − (n− 1)f2d+ f2 d

dt
〈V, γ′〉

)
dt(1)

= (n− 1)

∫ l

0

(
f ′

2 − f2d
)
dt+

∫ l

0

f2 d

dt
〈V, γ′〉dt

=
(n− 1)

2l

(
π2 − dl2

)
+

∫ l

0

f2 d

dt
〈V, γ′〉dt.

Now, we get an estimate for
∫ l

0
f2 d

dt 〈V, γ
′〉dt,∫ l

0

f2 d

dt
〈V, γ′〉dt = −2

∫ l

0

ff ′〈V, γ′〉dt

≤
∫ l

0

(f ′)
2
dt+

∫ l

0

f2〈V, γ′〉2dt

≤ π2

2l
+

(∫ l

0

f4(t)dt

) 1
2
(∫ l

0

|V |4dt

) 1
2

≤ π2

2l
+

(∫ l

0

f4(t)dt

) 1
2
(∫ l

0

g(t)
2
dt

) 1
2
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≤ π2

2l
+

√
3l

8
K.

By (1) we have∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+
π2

2l
+

√
3l

8
K

=
nπ2

2l
− (n− 1)dl

2
+

√
3l

8
K

=
1

2l
(nπ2 − (n− 1)dl2 + l

√
3l

8
K).

Thus

diamΣ ≤ 2
√
θ0,

where θ0 is the first positive root of the quartic equation−(n−1)du4+
√

3
8Ku

3+

nπ2 = 0. �

If the hypersurface Σn ⊆Mn+1 is compact, we can estimate the diameter of

the hypersurface by the mean value of
∣∣div(A2)−AdivA

∣∣4(x) on the maximal
geodesics which are the geodesics from the point p to a point of cut(p).

Theorem 3.1. Let Σn ⊆Mn+1(c) be a compact orientable Riemannian hyper-
surface with the shape operator A, p ∈ Σ be a fixed point; and let V̄ (x) ≤ K2

for a constant K, where V̄ (x) is the mean value of
∣∣div(A2)−AdivA

∣∣4(x) on
the maximal geodesic passing through the points p and x. If

Ric 1
2 |A|

2 ≥ ((n− 1)d) gΣ and (n− 1)d+
√

3/8K > 0,

then

diamΣ ≤ 2

√
nπ2

(n− 1)d+
√

3/8K
.

Proof. Suppose that γ(t) is a unit minimal geodesic from the fixed point p to
an arbitrary point x ∈ cut(p) with the length l. As in the proof of the previous
theorem we set V = div(A2)−AdivA. Now by (1)∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+

∫ l

0

f2 d

dt
〈V, γ′〉dt;

also ∫ l

0

f2 d

dt
〈V, γ′〉dt ≤ π2

2l
+

(∫ l

0

f4(t)dt

) 1
2
(∫ l

0

|V |4dt

) 1
2

=
π2

2l
+
√

(3/8) V̄ l,
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where V = 1
l

∫ l
0
|V |4dt is the mean value of |V |4 on the maximal geodesic. So∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+
π2

2l
+
√

3/8lK

=
1

2l
(nπ2 −

(
(n− 1)d+

√
3/8K

)
l2).

Thus l ≤
√

nπ2

(n−1)d+
√

3/8K
and we have

diamΣ ≤ 2

√
nπ2

(n− 1)d+
√

3/8K
.

�

Remark 3.2. When the ambient manifold doesn’t have a constant sectional cur-
vature, Proposition 2.5 shows that how the extrinsic data such as RicA(N,N),
(∇̄XR̄ ), T1(W,Y ) = RicA(AW,Y ), T2(Y ) = Ric(∇XA)(N,Y ) and T3(W,Y ) =〈
R̄(N,A2W )N,Y

〉
affects the compactness (it also influences other topological

and geometrical features).

Now we prove Theorem 1.6. Note that the required conditions are indepen-
dent of the sectional curvature of the ambient manifold.

Proof of Theorem 1.6. Suppose that γ(t) is the unit minimal geodesic by the
length l, from the fixed point p to an arbitrary point x ∈ Σ\cut(p). By consid-
ering a parallel orthonormal frame {E1 = γ′, E2, . . . , En} along γ, the smooth
function f(t) = sin(πtl ), and the index form of γ(t), we have

I(fEi, fEi) =

∫ l

0

(
|f ′Ei|

2 − 〈R(fEi, γ
′)γ′, fEi〉

)
dt.

So ∑n

i=2
I(fEi, fEi) =

∫ l

0

(
(n− 1)f ′

2 − f2Ric(γ′, γ′)
)
dt.

By the assumptions, Ric 1
2 |A|

2(γ′, γ′) ≥ (n− 1)d; so

−Ric(γ′, γ′) ≤ − (n− 1)d+ n2〈∇H, γ′〉2 + n2HHessH(γ′, γ′)

− n(n− 1)

2
HessH2(γ′, γ′).

Thus we have∑n

i=2
I(fEi, fEi) =

∫ l

0

(
(n− 1)f ′

2 − f2Ric(γ′, γ′)
)
dt

≤ (n− 1)

∫ l

0

(
f ′

2 − f2d
)
dt+ n2

∫ l

0

f2〈∇H, γ′〉2dt
+ n2

∫ l

0

f2HHessH(γ′, γ′)dt

− n(n− 1)

2

∫ l

0

f2HessH2(γ
′, γ′)dt
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=
(n− 1)

2l

(
π2 − dl2

)
+ n2

∫ l

0

f2(H ′)2dt
+ n2

∫ l

0

f2HH ′′dt− n(n− 1)

2

∫ l

0

f2H2
′′dt,

where H(t) = H(γ(t)) and H2(t) = H2(γ(t)). Now by

n2

∫ l

0

f2HH ′′dt = n2f2HH ′
∣∣l
0
− n2

∫ l

0

(
f2H

)′
H ′dt

= −n2

∫ l

0

(
f2
)′
HH ′dt− n2

∫ l

0

f2(H ′)
2
dt,

we have the following estimate;∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
− n2

∫ l

0

(
f2
)′
HH ′dt

− n(n− 1)

2

∫ l

0

f2H2
′′dt.(2)

By estimating −n2
∫ l

0

(
f2
)′
HH ′dt, we get

−n2

∫ l

0

(
f2
)′
HH ′dt = −n2

(
f2
)′H2

2

∣∣∣∣l
0

+
n2

2

∫ l

0

(
f2
)′′
H2dt

=
n2

2

∫ l

0

(
f2
)′′
H2dt

≤ n2

2

(∫ l

0

((
f2
)′′)2

dt

) 1
2
(∫ l

0

H4dt

) 1
2

≤
√

2n2π2

2l
√
l

(∫ l

0

H4dt

) 1
2

.

Thus ∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+

√
2n2π2

2l
√
l

(∫ l

0

H4dt

) 1
2

−n(n− 1)

2

∫ l

0

f2H2
′′dt.(3)

Now, we get the estimation of the diameter of the hypersurface under each
condition. For (a) we have∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+

√
2n2π2

2l
√
l
K1 −

n(n− 1)lβ

4

=
1

2l
√
l

(
−
(

(n− 1)d+ β
n(n− 1)

2

)
l2
√
l + (n− 1)π2

√
l

)
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+
1

2l
√
l

√
2n2π2K1.

So l ≤
√
θ0, where θ0 is the first positive root of

p(u) = −
(

(n− 1)d+
n(n− 1)β

2

)
u5 + (n− 1)π2u+

√
2n2π2K1.

For (b), at first∫ l

0

f2(t)H2
′′(t)dt= f2(t)H2

′(t)
∣∣l
0
−
∫ l

0

(
f2(t)

)′
H2
′(t)dt

= −
∫ l

0

(
f2(t)

)′
H2
′(t)dt,(4)

also ∫ l

0

(
f2
)′
H2
′dt ≤

(∫ l

0

((
f2
)′)2

dt

) 1
2
(∫ l

0

(
H2
′)2dt) 1

2

=
π√
2l

(∫ l

0

(
H2
′)2dt) 1

2

.(5)

So by (3), (4) and (5) we get the following estimation;

∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+

√
2n2π2

2l
√
l

(∫ l

0

H4dt

) 1
2

+
π√
2l

n(n− 1)

2

(∫ l

0

(
H2
′)2dt) 1

2

≤ (n− 1)

2l

(
π2 − dl2

)
+

√
2n2π2

2l
√
l
K1 +

n(n− 1)π

2
√

2l
K2

=
1

2l
√
l
(−(n− 1)dl2

√
l +

n(n− 1)π√
2

K2l).

So diamΣ ≤ 2
√
θ0, where θ0 is the first positive root of

p(u) = −(n− 1)du5 +
n(n− 1)√

2
K2πu

2 + (n− 1)π2u+
√

2n2π2K1.

For (c), at first

−n(n− 1)

2

∫ l

0

f2H2
′′dt = −n(n− 1)

2
f2 H2

′∣∣l
0

+
n(n− 1)

2

∫ l

0

(
f2
)′
H2
′dt

=
n(n− 1)

2

(
f2
)′
H2|l0 −

n(n− 1)

2

∫ l

0

(
f2
)′′
H2dt

= −n(n− 1)

2

∫ l

0

(
f2
)′′
H2dt.(6)
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By (3) we get

∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+

√
2n2π2

2l
√
l

(∫ l

0

H4dt

) 1
2

−n(n− 1)

2

∫ l

0

(
f2
)′′
H2dt.(7)

By estimating −n(n−1)
2

∫ l
0

(
f2
)′′
H2dt we have

±n(n− 1)

2

∫ l

0

(
f2
)′′
H2dt ≤

n(n− 1)

4

(∫ l

0

((
f2
)′′)2

dt+

∫ l

0

H2
2dt

)

=
n(n− 1)π4

2l3
+
n(n− 1)

4

∫ l

0

H2
2dt.(8)

By (7) and (8) and the assumption, we get

∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+

√
2n2π2

2l
√
l

(∫ l

0

H4dt

) 1
2

+
n(n− 1)π4

2l3
+
n(n− 1)

4

∫ l

0

H2
2dt

=
(n− 1)

2l

(
π2 − dl2

)
+

√
2n2π2

2l
√
l
K1

+
n(n− 1)π4

2l3
+
n(n− 1)K2

4

=
1

2l3
(−(n− 1)dl4 +

n(n− 1)K2

2
l3 + (n− 1)π2l2)

+
1

2l3

(√
2n2π2K1l

√
l + n(n− 1)π4

)
.

So diamΣ ≤ 2
√
θ0, where θ0 is the first positive root of

p(u) = −(n−1)du8 +
n(n− 1)K2

2
u6 +(n−1)π2u4 +

√
2n2π2K1u

3 +n(n−1)π4.

�

Remark 3.3. For all polynomials p(u) we have p(0) > 0 and lim
u→+∞

p(u) = −∞,

and so they have one just positive root.

By adapting the proof of Theorem 3.1, we can get estimations for the diam-
eter of hypersurfaces by imposing some conditions on the mean values of the
mean curvatures.

Theorem 3.4. Let Σn ⊆Mn+1 be a compact orientable Riemannian hypersur-
face with the shape operator A, p ∈ Σ be a fixed point, and r(x) := distΣ(p, x);
and let H(x) and H2(x) respectively be the mean values of the functions H4(x)
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and H2
2 (x) on the maximal geodesic passing through p and x. If all the following

conditions are satisfied,

a) Ric 1
2 |A|

2 ≥ (n− 1)dgΣ and nK2

2 < d,

b) H ≤ K1 and H2 ≤ K2, where K1, K2 ≥ 0,

then

diam(Σ) ≤ 2π

√
−B +

√
B2 − 4Cn

2C
,

where B :=
((√

2n2/(n− 1)
)
K1 + 1

)
and C := −d+ (nK2/2).

Proof. Suppose that γ(t) is a unit minimal geodesic by the length l, from the
fixed point p to an arbitrary point x ∈ cut(p). Now as in the proof of the
previous theorem, by (6) and (7) we have

∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+

√
2n2π2

2l
√
l

(∫ l

0

H4dt

) 1
2

+
n(n− 1)π4

2l3
+
n(n− 1)

4

∫ l

0

H2
2dt.

So by the conditions on the mean curvature and the second-order mean curva-
ture, we have∑n

i=2
I(fEi, fEi)

≤ (n− 1)

2l

(
π2 − dl2

)
+

√
2n2π2

2l
K1

+
n(n− 1)π4

2l3
+
n(n− 1)

4
lK2

=
(n− 1)

2l3

((
−d+

nK2

2

)
l4 +

( √
2n2

(n− 1)
K1 + 1

)
π2l2 + nπ4

)
,

and the result follows. �

In the next two corollaries, we prove compactness results for the two impor-
tant cases below:

a) the hypersurfaces has constant mean curvature;
b) the hypersurfaces has constant second-order mean curvature (in fact

HessH2 ≡ 0).

Corollary 3.5. Let Σn ⊂ Mn+1 be a complete orientable Riemannian hy-
persurface with constant mean curvature, p ∈ Σ be a fixed point, and r(x) :=

distΣ(p, x); and let g : R→ R be an integrable function such that
∫ +∞

0
g(r)dr =

K. If

Ric 1
2 |A|

2 ≥ ((n− 1)d) gΣ > 0 and
∣∣H2

2 (r(x))
∣∣ ≤ g(r),
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where d > 0 is constant, then Σ is compact and diamΣ ≤ 2
√
θ0, where θ0 is

the first root of

p(u) = −du4 +
n

4
Ku3 + π2u2 + nπ4.

Proof. Since the mean curvature H is constant, by (2) and (6) we have∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
− n(n− 1)

2

∫ l

0

(
f2
)′′
H2dt.

Thus, by (8) and the assumption on the second-order mean curvature we have∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+
n(n− 1)π4

2l3

+
n(n− 1)

4

∫ l

0

H2
2dt

=
(n− 1)

2l3

(
−dl4 +

nK

4
l3 + π2l2 + nπ4

)
.

Hence diamΣ ≤ 2θ0, where θ0 is the first root of

p(u) = −du4 +
n

4
Ku3 + π2u2 + nπ4. �

Corollary 3.6. Let Σn ⊂Mn+1 be a Riemannian hypersurface with HessH2 ≡
0, p ∈ Σ be a fixed point, and r(x) = distΣ(p, x); and let g : R → R be an

integrable function such that
(∫ +∞

0
(g(r))

2
dr
) 1

2 ≤ K. If for a constant d > 0

H2(r(x)) ≤ g(r) and Ric 1
2 |A|

2 ≥ ((n− 1)d) gΣ,

then Σ is compact and diamΣ ≤ 2
√
θ0, where θ0 is the first root of

p(u) = −d(n− 1)u5 + (n− 1)π2u+
√

2n2π2K.

Proof. By (3) and the assumption on H2 we have

∑n

i=2
I(fEi, fEi) ≤

(n− 1)

2l

(
π2 − dl2

)
+

√
2n2π2

2l
√
l

(∫ l

0

H4dt

) 1
2

.

So diamΣ ≤
√
θ0, where θ0 is the first root of

p(u) = −(n− 1)du5 + (n− 1)π2u+
√

2n2π2K. �
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