DOI QR코드

DOI QR Code

Improved Cell Viability and Anti-Candida Activity of Probiotic Lactobacillus salivarius MG242 by Heat Adaptation

Lactobacillus salivarius MG242의 열 전처리시 생존율 증진 및 항 캔디다 효과

  • Received : 2019.02.07
  • Accepted : 2019.03.13
  • Published : 2019.03.31

Abstract

Vulvovaginal candidiasis is a major urogenital infection in women. Lactobacilli are important in maintaining vaginal health. In the present study, the effect of heat adaptation at $47{\sim}52^{\circ}C$ prior to heat stress at $60^{\circ}C$ in improving the viability of Lactobacillus salivarius MG242 was examined. L. salivarius MG242 has antifungal effects against Candida albicans. Heat-adapted cells had a higher survival rate than non-adapted cells during the subsequent heat stress. When chloramphenicol was added during the adaptation process, heat tolerance was abolished, suggesting the involvement of de novo protein synthesis with the heat adaptation of L. salivarius MG242 strain. Exopolysaccharide quantification and scanning election microscopy did not reveal any appreciable changes during heat adaptation. The antifungal activity of L. salivarius MG242 against C. albicans was maintained during the heat adaptation. These results suggest that heat adaptation can be applied for the development of probiotic products using L. salivarius MG242 to improve its stress tolerance during processing.

Keywords

References

  1. Alvarez-Ordonez, A., Fernandez, A., Lopez, M., Arenas, R. and Bernardo, A. 2008. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int. J. Food Microbiol. 123:212-219. https://doi.org/10.1016/j.ijfoodmicro.2008.01.015
  2. Balciunas, E. M., Martinez, F. A. C., Todorov, S. D., de Melo Franco, B. D. G., Converti, A. and de Souza Oliveira, R. P. 2013. Novel biotechnological applications of bacteriocins, a review. Food Control 32:134‒142. https://doi.org/10.1016/j.foodcont.2012.11.025
  3. Chapman, C., Gibson, G., Todd, S. and Rowland, I. 2013. Comparative in vitro inhibition of urinary tract pathogens by single- and multi- strain probiotics. Eur. J. Nutr. 52:1669-1677. https://doi.org/10.1007/s00394-013-0501-2
  4. De Gregorio, P., Tomas, M., Santos, V. and Nader-Macias, M. 2012. Beneficial lactobacilli, effects on the vaginal tract in a murine experimental model. Antonie van Leeuwenhoek J. Microbiol. 102:569-580. https://doi.org/10.1007/s10482-012-9752-9
  5. Ferrer, J. 2000. Vaginal candidosis, epidemiological and etiological factors. Int. J. Gynecol. Obstet. 71:21-27. https://doi.org/10.1016/S0020-7292(00)00350-7
  6. Forde, A. and Fitzgerald, G. F. 1999. Analysis of exopolysaccharide (EPS) production mediated by the bacteriophage adsorption blocking plasmid, pCI658, isolated from Lactococcus lactis ssp. cremoris HO2. Int. Dairy J. 9:465-472. https://doi.org/10.1016/S0958-6946(99)00115-6
  7. Han, Y. M. 2003. A role of neutrophils in anti-candida monoclonal antibody protection against vaginal infection due to Candida albicans. Yakhak Hoeji 47:190-194.
  8. Hansen, M. C., Nielsen, A. K., Molin, S., Hammer, K., Kilstrup, M., Palmer, R. J., Udsen, C. and White, D. C. 2001. Changes in rRNA levels during stress invalidates results from mRNA blotting, fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. J. Bacteriol. 183:4747-4751. https://doi.org/10.1128/JB.183.16.4747-4751.2001
  9. Hartke, A., Bouché, S., Giard, J. C., Benachour, A., Boutibonnes, P. and Auffray, Y. 1996. The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr. Microbiol. 33:194-199. https://doi.org/10.1007/s002849900099
  10. Jung, Y. J., Kang, C. H., Shin, Y. J. and So, J. S. 2017. Characterization and antifungal activity against Candida albicans of vaginal Lactobacillus spp. isolated from Korean women. Korean J. Biotechnol. Bioeng. 32:146-152.
  11. Kang, C. H., Han, S. H., Kim, Y. G. and Paek, N. S. 2018. In vitro probiotic properties of Lactobacillus salivarius MG242 isolated from human vagina. Probiotics & Antimicro. Prot. 10:343. https://doi.org/10.1007/s12602-017-9323-5
  12. Kang, C. H., Jeon, H. E., Shin, Y. J., Kwon, Y. J. and So, J. S. 2015. Heat adaptation improves viability of Lactococcus lactis subsp. lactis HE-1 after heat stress. Food Sci. Biotechnol. 24:1823-1827. https://doi.org/10.1007/s10068-015-0238-1
  13. Kwak, D. Y., Kang, C. H., Jeon, H. E. and So, J. S. 2014. Improved cell viability of Lactobacillus crispatus KLB46 by stress adaptation. Korean J. Biotechnol. Bioeng. 29:81-86.
  14. Liu, H. and Fang, H. H. P. 2002. Extraction of extracellular polymeric substances (EPS) of sludges. J. Biotechnol. 95:249-256. https://doi.org/10.1016/S0168-1656(02)00025-1
  15. Looijesteijn, P. J., Trapet, L., de Vries, E., Abee, T. and Hugenholtz, J. 2001. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64:71-80. https://doi.org/10.1016/S0168-1605(00)00437-2
  16. MacPhee, R., Miller, W., Gloor, G., McCormick, J., Hammond, J., Burton, J. and Reid, G. 2013. Influence of the vaginal microbiota on toxic shock syndrome Toxin 1 production by Staphylococcus aureus. Appl. Environ. Microbiol. 79:1835-1842. https://doi.org/10.1128/AEM.02908-12
  17. Mastromarino, P., Brigidi, P., Macchia, S., Maggi, L., Pirovano, F., Trinchieri, V., Conte, U. and Matteuzzi, D. 2002. Characterization and selection of vaginal Lactobacillus strains for the preparation of vaginal tablets. J. Appl. Microbiol. 93:884-893. https://doi.org/10.1046/j.1365-2672.2002.01759.x
  18. Paz, R., Lavari, L., Vinderola, G., Audero, G., Cuatrin, A., Zaritzky, N. and Reinheimer, J. 2012. Effect of heat-treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Res. Int. 48:748‒754. https://doi.org/10.1016/j.foodres.2012.06.018
  19. Reid, G. 2001. Probiotic agents to protect the urogenital tract against infection. Am. J. Clin. Nutr. 73:437-443. https://doi.org/10.1093/ajcn/73.2.437s
  20. Scheie, P. and Ehrenspeck, S. 1973. Large surface blebs on Escherichia coli heated to inactivating temperatures. J. Bacteriol. 114:814-818. https://doi.org/10.1128/JB.114.2.814-818.1973
  21. Sharareh, S. B., Shengqian, W., Stefan, T., Maria, H., Iris, A., Frank, M. U., Michael, W. and Helmut, V. 2013. Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12. Food Res. Int. 54:93-101. https://doi.org/10.1016/j.foodres.2013.05.024
  22. Somero, G. N. 1995. Proteins and temperature. Annu. Rev. Physiol. 57:43-68. https://doi.org/10.1146/annurev.ph.57.030195.000355
  23. Sorqvist, S. 2003. Heat resistance in liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp. Acta Vet. Scand. 44:1-19. https://doi.org/10.1186/1751-0147-44-1
  24. Sutherland, I. W. 1998. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 16:41-46. https://doi.org/10.1016/S0167-7799(97)01139-6
  25. Yanez, R., Marques, S., Girio, M. F. and Roseiro, J. C. 2008. The effect of acid stress on lactate production and growth kinetics in Lactobacillus rhamnosus cultures. Process Biochem. 43:356-361. https://doi.org/10.1016/j.procbio.2007.12.014
  26. Yoo, J. E., Lim, H. J. and Yoo, D. Y. 2010. A clinical study on 2 cases of recurrent Vulvovaginal candidiasis. Korean J. Obstet. Gynecol. 23:205-212.