DOI QR코드

DOI QR Code

Distinguishing between Thymic Epithelial Tumors and Benign Cysts via Computed Tomography

  • Sang Hyup Lee (Department of Radiology, Seoul National University College of Medicine) ;
  • Soon Ho Yoon (Department of Radiology, Seoul National University College of Medicine) ;
  • Ju Gang Nam (Department of Radiology, Seoul National University College of Medicine) ;
  • Hyung Jin Kim (Department of Radiology, Seoul National University College of Medicine) ;
  • Su Yeon Ahn (Department of Radiology, Konkuk University School of Medicine) ;
  • Hee Kyung Kim (Department of Radiology, Seoul National University College of Medicine) ;
  • Hyun Ju Lee (Department of Radiology, Seoul National University College of Medicine) ;
  • Hwan Hee Lee (Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Gi Jeong Cheon (Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Jin Mo Goo (Department of Radiology, Seoul National University College of Medicine)
  • Received : 2018.06.28
  • Accepted : 2018.12.06
  • Published : 2019.04.01

Abstract

Objective: To investigate whether computed tomography (CT) and fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) may be applied to distinguish thymic epithelial tumors (TETs) from benign cysts in the anterior mediastinum. Materials and Methods: We included 262 consecutive patients with pathologically proven TETs and benign cysts 5 cm or smaller who underwent preoperative CT scans. In addition to conventional morphological and ancillary CT findings, the relationship between the lesion and the adjacent mediastinal pleura was evaluated qualitatively and quantitatively. Mean lesion attenuation was measured on CT images. The maximum standardized uptake value (SUVmax) was obtained with FDG-PET scans in 40 patients. CT predictors for TETs were identified with multivariate logistic regression analysis. For validation, we assessed the diagnostic accuracy and inter-observer agreement between four radiologists in a size-matched set of 24 cysts and 24 TETs using a receiver operating characteristic curve before and after being informed of the study findings. Results: The multivariate analysis showed that post-contrast attenuation of 60 Hounsfield unit or higher (odds ratio [OR], 12.734; 95% confidence interval [CI], 2.506-64.705; p = 0.002) and the presence of protrusion from the mediastinal pleura (OR, 9.855; 95% CI, 1.749-55.535; p = 0.009) were the strongest CT predictors for TETs. SUVmax was significantly higher in TETs than in cysts (5.3 ± 2.4 vs. 1.1 ± 0.3; p < 0.001). After being informed of the study findings, the readers' area under the curve improved from 0.872-0.955 to 0.949-0.999 (p = 0.066-0.149). Inter-observer kappa values for protrusion were 0.630-0.941. Conclusion: Post-contrast CT attenuation, protrusion from the mediastinal pleura, and SUVmax were useful imaging features for distinguishing TETs from cysts in the anterior mediastinum.

Keywords

References

  1. Henschke CI, Lee IJ, Wu N, Farooqi A, Khan A, Yankelevitz D, et al. CT screening for lung cancer: prevalence and incidence of mediastinal masses. Radiology 2006;239:586-590  https://doi.org/10.1148/radiol.2392050261
  2. Yoon SH, Choi SH, Kang CH, Goo JM. Incidental anterior mediastinal nodular lesions on chest CT in asymptomatic subjects. J Thorac Oncol 2018;13:359-366  https://doi.org/10.1016/j.jtho.2017.11.124
  3. Jeung MY, Gasser B, Gangi A, Bogorin A, Charneau D, Wihlm JM, et al. Imaging of cystic masses of the mediastinum. Radiographics 2002;22 Spec No:S79-S93  https://doi.org/10.1148/radiographics.22.suppl_1.g02oc09s79
  4. Tomiyama N, Honda O, Tsubamoto M, Inoue A, Sumikawa H, Kuriyama K, et al. Anterior mediastinal tumors: diagnostic accuracy of CT and MRI. Eur J Radiol 2009;69:280-288  https://doi.org/10.1016/j.ejrad.2007.10.002
  5. Araki T, Sholl LM, Gerbaudo VH, Hatabu H, Nishino M. Intrathymic cyst: clinical and radiological features in surgically resected cases. Clin Radiol 2014;69:732-738  https://doi.org/10.1016/j.crad.2014.03.002
  6. Jurado J, Javidfar J, Newmark A, Lavelle M, Bacchetta M, Gorenstein L, et al. Minimally invasive thymectomy and open thymectomy: outcome analysis of 263 patients. Ann Thorac Surg 2012;94:974-981; discussion 981-982  https://doi.org/10.1016/j.athoracsur.2012.04.097
  7. Ackman JB, Verzosa S, Kovach AE, Louissaint A Jr, Lanuti M, Wright CD, et al. High rate of unnecessary thymectomy and its cause. Can computed tomography distinguish thymoma, lymphoma, thymic hyperplasia, and thymic cysts? Eur J Radiol 2015;84:524-533  https://doi.org/10.1016/j.ejrad.2014.11.042
  8. Lococo F. The role of 18F-FDG PET/CT scan in predicting histological type of thymic epithelial tumors: indications and practical clinical considerations. Thorac Cardiovasc Surg 2018;66:350-351  https://doi.org/10.1055/s-0037-1607443
  9. Shinya T, Tanaka T, Soh J, Matsushita T, Sato S, Toyooka S, et al. Diagnostic value of dual-time-point F-18 FDG PET/CT and chest CT for the prediction of thymic epithelial neoplasms. Acta Med Okayama 2017;71:105-112 
  10. Choi YW, McAdams HP, Jeon SC, Hong EK, Kim YH, Im JG, et al. Idiopathic multilocular thymic cyst: CT features with clinical and histopathologic correlation. AJR Am J Roentgenol 2001;177:881-885  https://doi.org/10.2214/ajr.177.4.1770881
  11. Maki DD, Birnbaum BA, Chakraborty DP, Jacobs JE, Carvalho BM, Herman GT. Renal cyst pseudoenhancement: beam-hardening effects on CT numbers. Radiology 1999;213:468-472  https://doi.org/10.1148/radiology.213.2.r99nv33468
  12. Mileto A, Nelson RC, Samei E, Jaffe TA, Paulson EK, Barina A, et al. Impact of dual-energy multi-detector row CT with virtual monochromatic imaging on renal cyst pseudoenhancement: in vitro and in vivo study. Radiology 2014;272:767-776  https://doi.org/10.1148/radiol.14132856
  13. Chen G, Marx A, Chen WH, Yong J, Puppe B, Stroebel P, et al. New WHO histologic classification predicts prognosis of thymic epithelial tumors: a clinicopathologic study of 200 thymoma cases from China. Cancer 2002;95:420-429  https://doi.org/10.1002/cncr.10665
  14. Nishino M, Ashiku SK, Kocher ON, Thurer RL, Boiselle PM, Hatabu H. The thymus: a comprehensive review. Radiographics 2006;26:335-348  https://doi.org/10.1148/rg.262045213
  15. Wang X, Chen K, Li X, Li Y, Yang F, Li J, et al. Clinical features, diagnosis and thoracoscopic surgical treatment of thymic cysts. J Thorac Dis 2017;9:5203-5211  https://doi.org/10.21037/jtd.2017.10.148
  16. Bae KT, Heiken JP, Siegel CL, Bennett HF. Renal cysts: is attenuation artifactually increased on contrast-enhanced CT images? Radiology 2000;216:792-796  https://doi.org/10.1148/radiology.216.3.r00se14792
  17. Birnbaum BA, Hindman N, Lee J, Babb JS. Renal cyst pseudoenhancement: influence of multidetector CT reconstruction algorithm and scanner type in phantom model. Radiology 2007;244:767-775  https://doi.org/10.1148/radiol.2443061537
  18. Wang ZJ, Coakley FV, Fu Y, Joe BN, Prevrhal S, Landeras LA, et al. Renal cyst pseudoenhancement at multidetector CT: what are the effects of number of detectors and peak tube voltage? Radiology 2008;248:910-916  https://doi.org/10.1148/radiol.2482071583
  19. Araki T, Sholl LM, Gerbaudo VH, Hatabu H, Nishino M. Imaging characteristics of pathologically proven thymic hyperplasia: identifying features that can differentiate true from lymphoid hyperplasia. AJR Am J Roentgenol 2014;202:471-478  https://doi.org/10.2214/AJR.13.11210
  20. Levitt RG, Husband JE, Glazer HS. CT of primary germ-cell tumors of the mediastinum. AJR Am J Roentgenol 1984;142:73-78  https://doi.org/10.2214/ajr.142.1.73
  21. Tateishi U, Muller NL, Johkoh T, Onishi Y, Arai Y, Satake M, et al. Primary mediastinal lymphoma: characteristic features of the various histological subtypes on CT. J Comput Assist Tomogr 2004;28:782-789  https://doi.org/10.1097/00004728-200411000-00009
  22. McErlean A, Huang J, Zabor EC, Moskowitz CS, Ginsberg MS. Distinguishing benign thymic lesions from early-stage thymic malignancies on computed tomography. J Thorac Oncol 2013;8:967-973  https://doi.org/10.1097/JTO.0b013e3182904bc2
  23. Sung YM, Lee KS, Kim BT, Choi JY, Shim YM, Yi CA. 18F-FDG PET/CT of thymic epithelial tumors: usefulness for distinguishing and staging tumor subgroups. J Nucl Med 2006;47:1628-1634 
  24. Tatci E, Ozmen O, Dadali Y, Biner IU, Gokcek A, Demirag F, et al. The role of FDG PET/CT in evaluation of mediastinal masses and neurogenic tumors of chest wall. Int J Clin Exp Med 2015;8:11146-11152 
  25. Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 2009;251:166-174  https://doi.org/10.1148/radiol.2511081300
  26. Daye D, Ackman JB. Characterization of mediastinal masses by MRI: techniques and applications. Appl Radiol 2017;46:10-22  https://doi.org/10.37549/AR2394
  27. Zhang W, Zhou Y, Xu XQ, Kong LY, Xu H, Yu TF, et al. A whole-tumor histogram analysis of apparent diffusion coefficient maps for differentiating thymic carcinoma from lymphoma. Korean J Radiol 2018;19:358-365  https://doi.org/10.3348/kjr.2018.19.2.358
  28. Ackman JB, Wu CC. MRI of the thymus. AJR Am J Roentgenol 2011;197:W15-W20  https://doi.org/10.2214/AJR.10.4703
  29. Ruffini E, Van Raemdonck D, Detterbeck F, Rocco G, Thomas P, Venuta F. Management of thymic tumors: a survey of current practice among members of the European Society of Thoracic Surgeons. J Thorac Oncol 2011;6:614-623  https://doi.org/10.1097/JTO.0b013e318207cd74
  30. Takahashi K, Al-Janabi NJ. Computed tomography and magnetic resonance imaging of mediastinal tumors. J Magn Reson Imaging 2010;32:1325-1339  https://doi.org/10.1002/jmri.22377
  31. Shahrzad M, Le TS, Silva M, Bankier AA, Eisenberg RL. Anterior mediastinal masses. AJR Am J Roentgenol 2014;203:W128-W138 https://doi.org/10.2214/AJR.13.11998