DOI QR코드

DOI QR Code

Evaluation of nitrogen oxide removal characteristics using TiO2

TiO2를 이용한 질소산화물 제거 특성 평가

  • Park, Jun-Gu (Dept. of Earth and Environmental Engineering, College of Engineering, Kangwon National University) ;
  • Lim, Hee-Ah (Dept. of Earth and Environmental Engineering, College of Engineering, Kangwon National University) ;
  • Park, Young-Koo (Dept. of Earth and Environmental Engineering, College of Engineering, Kangwon National University)
  • 박준규 (강원대학교 공학대학 지구환경시스템공학과) ;
  • 임희아 (강원대학교 공학대학 지구환경시스템공학과) ;
  • 박영구 (강원대학교 공학대학 지구환경시스템공학과)
  • Received : 2019.06.04
  • Accepted : 2019.06.28
  • Published : 2019.06.30

Abstract

Fine dust in air pollutants is recognized as one of the most serious social environmental problems. Most of the NOx is generated in a combustion process such as that of a coal-fired power plant, and therefore efficient elimination of the NOx from the coal-fired power plants is needed. This study investigates the removal efficiency of using $TiO_2$, a photocatalyst, to remove NOx by Selective Catalytic Reduction (SCR). To evaluate the NOx removal efficiency, $TiO_2$ catalyst and phosphate binder were mixed on the surface of the $Al_2O_3$ substrate with the exothermic agent, and the substrate was heat-treated. The NOx removal efficiency of the catalysts was evaluated according to the temperature, and XRD, SEM, TG-DTA and BET analyzes were performed to investigate the physicochemical properties of the catalysts. NOx removal efficiency was 58.7%~65.9% at 20min, 63.7~66.0% at 30min with temperature change according to time($250^{\circ}C{\sim}500^{\circ}C$). The $TiO_2$ used in the SCR for NOx removal is judged to have the most efficient removal efficiency at $300^{\circ}C$.

대기오염물질 중 미세먼지는 심각한 사회적 환경문제로 인식되고 있다. 미세먼지의 원인 물질 중 하나인 질소산화물(NOx)은 석탄화력발전소의 연소공정에서 주로 발생하므로 효율적인 NOx 제거가 필요한 실정이다. 본 연구에서는 선택적 촉매 환원법(Selective Catalytic Reduction, SCR)을 이용한 NOx 제거에서 $TiO_2$ 광촉매의 NO 제거효율을 연구하였다. NO 제거효율을 평가하기 위해 발열제가 내장된 $Al_2O_3$ 기판 표면에 $TiO_2$ 촉매와 인산염의 접착 바인더를 혼합하여 도포한 후 제조된 기판을 열처리하면서 실험을 수행하였다. 온도에 따른 촉매의 NO 제거효율을 평가하였고, 촉매의 물리화학적 특성을 위하여 XRD, SEM, TG-DTA, BET 분석을 수행하였다. NOx 제거 효율은 시간에 따른 온도변화($250^{\circ}C{\sim}500^{\circ}C$)로 20분에서 제거효율은 58.7%~65.9%이며, 30분에서 63.7%~66.0%로 나타났다. 질소산화물 제거용 SCR로 사용되는 $TiO_2$$300^{\circ}C$가 제거효율이 가장 효율적인 것으로 판단된다.

Keywords

HGOHBI_2019_v36n2_668_f0001.png 이미지

Fig. 1. Flow chart of experimental procedure by process.

HGOHBI_2019_v36n2_668_f0002.png 이미지

Fig. 2. Schematic diagram of De-NO reactor.

HGOHBI_2019_v36n2_668_f0003.png 이미지

Fig. 4. Scanning electron microphotograph (× 30,000) of catalyst. (a) TiO2 Powder, (b) 400℃ TiO2 Powder

HGOHBI_2019_v36n2_668_f0004.png 이미지

Fig. 5. X-ray diffraction patterns of standard catalyst.

HGOHBI_2019_v36n2_668_f0005.png 이미지

Fig. 5. Thermogravimetric-differential thermal analysis of standard catalyst.

HGOHBI_2019_v36n2_668_f0006.png 이미지

Fig. 6. NO removal efficiency by reaction time by temperature.

Table 1. Temperature by voltage

HGOHBI_2019_v36n2_668_t0001.png 이미지

Table 2. Experimental conditions in the reactor

HGOHBI_2019_v36n2_668_t0002.png 이미지

Table 3. Specific surface area by temperature

HGOHBI_2019_v36n2_668_t0003.png 이미지

Table 4. NO removal efficiency results

HGOHBI_2019_v36n2_668_t0004.png 이미지

References

  1. A. Khoshhal, M. Rahimi, A. A. Alsairafi, "CFD study on influence of fuel temperature on NOx emission in a HiTAC furnace", Int. Commun Heat Mass Transfer., Vol. 38, No. 10, pp. 1421-1427, (2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.08.008
  2. C. D. Cooper, F. C. Alley, Air Pollution Control: A design approach, pp. 485-513, Waveland Press, Inc., (1994).
  3. B. K. Gullett, P. W. Groff, M. L. Lin, J. M. Chen, "NOx Removal with Combined Selective Catalytic Reduction and Selective Noncatalytic Reduction: Pilot-Scale Test Results", J. Air & Waste Manage. Assoc., Vol. 44, No. 10, pp. 1188-1194, (1994).
  4. J. Biener, M. Baurmer, J. Wang, R. J. Madix, "Eletronic strcture and growth of vanadium on $TiO_2$(110)", Surface Science, Vol. 450, No. 1-2, pp. 12-26, (2000). https://doi.org/10.1016/S0039-6028(99)01216-9
  5. M. Koebel, M. Elsener, G. Madia, "Reaction pathway in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperature", Ind. Eng. Chem. Res., Vol. 40, No. 1, pp. 52-59, (2001). https://doi.org/10.1021/ie000551y
  6. S.-S. Park, Thermal Behavior of TiO2-based honeycomb Type SCR Catalyst and the Influence of Cell Density on the Reaction Efficiency, Ph. D. Dissertation Gyeongsang National University, (2010).
  7. V. I. Pârvulescu, P. Grange, B. Delmon, "Catalytic removal of NO", Catal. Today., Vol. 46, No. 4, pp. 233-316, (1998). https://doi.org/10.1016/S0920-5861(98)00399-X
  8. R. H. Perry, D. W. Green, J. O. Maloney, Perry's Chemical Engineers' Handbook, Seventh Ed., pp. 26-28, New York : McGraw-Hill, (1997).
  9. T. S. Hwang, M. K. Pak, Y. W. Rhee, H. G. Woo, "A study on the Activity of V2O5/TiO2 Catalyst for NOx Removal", J.Korean Ind. Eng. Chem., Vol. 14, No. 2, pp. 202-207, (2003).
  10. S. Andreoli, F. A. Deorsola, C. Galletti, R. Pirone, "Nanostructured MnOx catalysts for low-temperature NOx SCR", Chem. Eng. J., Vol. 278, No. 15, pp. 174-182, (2015). https://doi.org/10.1016/j.cej.2014.11.023
  11. Y. B. Zeldovich, "The Oxidation of Nitrogen in combustion and Explosion", Acta. Physicochim., Vol. 4, No. 21, pp. 577-628, (1946).
  12. G. J. Kim, S. M. Lee, S. C. Hong, "A study on the Reaction Characteristics of the $NH_3$ Oxidation over W/$TiO_2$", Appl. Chem. Eng., Vol. 24, No. 6, pp. 645-649, (2013). https://doi.org/10.14478/ace.2013.1089
  13. H. T. Jang, Y. K. Park, Y. S. Ko, and W. S. Cha, "Selective Catalytic Oxidation of Ammonia in the Presence of Manganese Catalysts", Korean Chem. Eng. Res., No. 46, pp. 498, (2008).
  14. E. Slavinskaya, S. Veniaminov, P. Notte, A. Ivanova, A. Boronin, Y. Chesalov, I. Polukhina, and A. Noskov, "Studies of the mechanism of ammonia oxidation into nitrous oxide over Mn-Bi-O/${\alpha}$-$Al_2O_3$ catalyst", J. Catal., Vol. 222, No. 1, pp. 129-142 (2004). https://doi.org/10.1016/j.jcat.2003.09.029
  15. A. Akah, C. Cundy, and A. Garforth, "The selective catalytic oxidation of $NH_3$ over Fe-ZSM-5", Appl. Catal. B, Vol. 59, No. 3, pp. 221-226, (2005). https://doi.org/10.1016/j.apcatb.2004.10.020