Fig. 1. Flow chart of experimental procedure by process.
Fig. 2. Schematic diagram of De-NO reactor.
Fig. 4. Scanning electron microphotograph (× 30,000) of catalyst. (a) TiO2 Powder, (b) 400℃ TiO2 Powder
Fig. 5. X-ray diffraction patterns of standard catalyst.
Fig. 5. Thermogravimetric-differential thermal analysis of standard catalyst.
Fig. 6. NO removal efficiency by reaction time by temperature.
Table 1. Temperature by voltage
Table 2. Experimental conditions in the reactor
Table 3. Specific surface area by temperature
Table 4. NO removal efficiency results
References
- A. Khoshhal, M. Rahimi, A. A. Alsairafi, "CFD study on influence of fuel temperature on NOx emission in a HiTAC furnace", Int. Commun Heat Mass Transfer., Vol. 38, No. 10, pp. 1421-1427, (2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.08.008
- C. D. Cooper, F. C. Alley, Air Pollution Control: A design approach, pp. 485-513, Waveland Press, Inc., (1994).
- B. K. Gullett, P. W. Groff, M. L. Lin, J. M. Chen, "NOx Removal with Combined Selective Catalytic Reduction and Selective Noncatalytic Reduction: Pilot-Scale Test Results", J. Air & Waste Manage. Assoc., Vol. 44, No. 10, pp. 1188-1194, (1994).
-
J. Biener, M. Baurmer, J. Wang, R. J. Madix, "Eletronic strcture and growth of vanadium on
$TiO_2$ (110)", Surface Science, Vol. 450, No. 1-2, pp. 12-26, (2000). https://doi.org/10.1016/S0039-6028(99)01216-9 - M. Koebel, M. Elsener, G. Madia, "Reaction pathway in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperature", Ind. Eng. Chem. Res., Vol. 40, No. 1, pp. 52-59, (2001). https://doi.org/10.1021/ie000551y
- S.-S. Park, Thermal Behavior of TiO2-based honeycomb Type SCR Catalyst and the Influence of Cell Density on the Reaction Efficiency, Ph. D. Dissertation Gyeongsang National University, (2010).
- V. I. Pârvulescu, P. Grange, B. Delmon, "Catalytic removal of NO", Catal. Today., Vol. 46, No. 4, pp. 233-316, (1998). https://doi.org/10.1016/S0920-5861(98)00399-X
- R. H. Perry, D. W. Green, J. O. Maloney, Perry's Chemical Engineers' Handbook, Seventh Ed., pp. 26-28, New York : McGraw-Hill, (1997).
- T. S. Hwang, M. K. Pak, Y. W. Rhee, H. G. Woo, "A study on the Activity of V2O5/TiO2 Catalyst for NOx Removal", J.Korean Ind. Eng. Chem., Vol. 14, No. 2, pp. 202-207, (2003).
- S. Andreoli, F. A. Deorsola, C. Galletti, R. Pirone, "Nanostructured MnOx catalysts for low-temperature NOx SCR", Chem. Eng. J., Vol. 278, No. 15, pp. 174-182, (2015). https://doi.org/10.1016/j.cej.2014.11.023
- Y. B. Zeldovich, "The Oxidation of Nitrogen in combustion and Explosion", Acta. Physicochim., Vol. 4, No. 21, pp. 577-628, (1946).
-
G. J. Kim, S. M. Lee, S. C. Hong, "A study on the Reaction Characteristics of the
$NH_3$ Oxidation over W/$TiO_2$ ", Appl. Chem. Eng., Vol. 24, No. 6, pp. 645-649, (2013). https://doi.org/10.14478/ace.2013.1089 - H. T. Jang, Y. K. Park, Y. S. Ko, and W. S. Cha, "Selective Catalytic Oxidation of Ammonia in the Presence of Manganese Catalysts", Korean Chem. Eng. Res., No. 46, pp. 498, (2008).
-
E. Slavinskaya, S. Veniaminov, P. Notte, A. Ivanova, A. Boronin, Y. Chesalov, I. Polukhina, and A. Noskov, "Studies of the mechanism of ammonia oxidation into nitrous oxide over Mn-Bi-O/
${\alpha}$ -$Al_2O_3$ catalyst", J. Catal., Vol. 222, No. 1, pp. 129-142 (2004). https://doi.org/10.1016/j.jcat.2003.09.029 -
A. Akah, C. Cundy, and A. Garforth, "The selective catalytic oxidation of
$NH_3$ over Fe-ZSM-5", Appl. Catal. B, Vol. 59, No. 3, pp. 221-226, (2005). https://doi.org/10.1016/j.apcatb.2004.10.020