DOI QR코드

DOI QR Code

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea

한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구

  • Kim, In-Young (R&D Center, Biobeautech Co., Ltd.) ;
  • Noh, Ji-Min (R&D Center, Biobeautech Co., Ltd.) ;
  • Nam, Eun-Hee (R&D Center, Biobeautech Co., Ltd.) ;
  • Shin, Moon-Sam (Dept. of Senior Healthy Care and Beauty and Cosmetic science, Eulji University)
  • 김인영 ((주)바이오뷰텍 기업부설 연구소) ;
  • 노지민 ((주)바이오뷰텍 기업부설 연구소) ;
  • 남은희 ((주)바이오뷰텍 기업부설 연구소) ;
  • 신문삼 (을지대학교 미용화장품과학과)
  • Received : 2019.06.07
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

이 연구는 경상북도 봉화지역에서 매장된 천연 광물을 이용하여 화장료용의 분체로써 활용가치를 부여한 코팅 방법에 관한 것이다. 이 광물의 이름은 부석이라고 칭하며, 미립자 파우더를 개발하여 이 파우더의 성능을 평가하고 화장품의 효능적 가치가 있는 가에 대하여 연구한 결과를 보고한다. 이 파우더의 표면에 오일을 코팅하기 위하여 미립자 표면에 알루미늄하이드록사이드를 1차 코팅한 후에 여기에 알킬실란으로 코팅하였다. 또한, 식물성 오일로 코팅하여 파우더의 응집을 막고, 오일상에서의 분산성을 높일 수 있도록 하였다. 첫째; 부석파우더의 입자는 $10{\sim}50{\mu}m$의 입자를 가지고 있었으며, 입자의 표면에 다공성의 구멍이 있었다. 둘째; 이 파우더의 구성성분은 $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$ 등을 함유하였다. 셋째: 이 파우더의 입자는 판상형 구조를 가지며, 다공성으로 적갈색을 가지고 있음을 SEM과 TEM 분석을 통하여 알 수 있었다. 넷째; 이부석 파우더의 원적외선 방사율은 $0.924{\mu}m$이었으며, 방사에너지는 $3.72{\times}10^W/m^2{\cdot}{\mu}m$ 이었다. 또한 음이온 방출량은 128 ION/cc를 방출하는 것으로써, 코팅을 하더라도 변하지 않고 그대로 그 성능이 유지되는 것을 알 수 있었다. 이러한 결과를 바탕으로 화장품의 응용분야로써 비비크림, 쿠션파운데이션, 파우더펙트 등의 색조화장품, 선블록크림, 워시오프 마사지팩 등의 기초 화장료에 폭넓게 응용이 가능할 것으로 기대한다.

Keywords

HGOHBI_2019_v36n2_498_f0001.png 이미지

Fig. 1. Picture of coating mechanism of finished fine pumice powders; (a): coating 10% alkylsilan, (b) coating 10% natural oil.

HGOHBI_2019_v36n2_498_f0002.png 이미지

Fig. 2. Pictures of pumice stone and fine powder; (a): pumice stones, (b) micronized fine pumice powder

HGOHBI_2019_v36n2_498_f0003.png 이미지

Fig. 3. The pictures of SEM analysis of micronized pumice powder compared before treatment with after treatment using alkyl silan. (A) and (B): before treated, magnification x 300 times, SEM and magnification x 3000 times, SEM, (C) and (D): magnification x 300 times, SEM and magnification x 300 times, SEM)

HGOHBI_2019_v36n2_498_f0004.png 이미지

Fig. 4. The picture of TEM analysis of micronized pumice powder without any treatment. (A) observed with TEM analysis, (B) measured diffraction pattern of pumice powder.

HGOHBI_2019_v36n2_498_f0005.png 이미지

Fig. 5. The picture of particle size of micronized pumice powder measured by Zeta-sizer. (A) origin pumice powder, (B) coated alkylsilan pumice powder, (C) coated natural oil.

HGOHBI_2019_v36n2_498_f0006.png 이미지

Fig. 6. The graph of Ramann analysis coated micronized pumice powder. (a) origin pumice powder, (b) coated alkylsilan pumice powder, (c) coated natural oil.

Table 1. Analytical Result of Pumice Powder Refined as Micronized Size Improvement

HGOHBI_2019_v36n2_498_t0001.png 이미지

Table 1. Determination of Heavy Metal Analysis in Micronized Pumice Powder

HGOHBI_2019_v36n2_498_t0002.png 이미지

References

  1. D.K. Lee, J. H. Lee, S. Y. Park, "Preparation and characteristics of carmine coated mica pearlescent pigment", J. of the Korean Oil Chemists' Soc., Vol. 25, No. 4, pp. 511-517, (2008).
  2. C. W. Shin, M. H. Hyun, D. K. Lee, "Preparation and coating of artificial pearl using inorganic pigment", J. of the Korean Oil Chemists' Soc., Vol. 32, No. 3 pp 528-535, (2015). https://doi.org/10.12925/jkocs.2015.32.3.528
  3. S. W. Kim. "Oxygen permeation characteristics of nano-silica hybrid thin films", J. of the Korean Oil Chemists' Soc., Vol. 24, No. 2 pp174-181, (2007).
  4. M. Putri, D. Darminto, "Synthesis of zeolites from lombok pumice as silica source for ion exchanger", International Basic Science Conference, January pp107-110, (2018).
  5. A. M. Rashad, "A short manual on natural pumice as a lightweight aggregate: A short manual on natural pumice as a lightweight aggregate", Journal of Building Engineering, Vol. 25, p.100802, (2019). https://doi.org/10.1016/j.jobe.2019.100802
  6. S. Bom, J. Jorge, H. M. Ribeiro, J. Marto, "A short manual on natural pumice as a lightweight aggregate", Journal of Cleaner Peoduction, Vol. 225, pp. 270-290 (2019). https://doi.org/10.1016/j.jclepro.2019.03.255
  7. B. Heibati, S. Rodrigue-Couto, "Removal of noxious dye-Acid orange 7 from aqueous solution using natural pumice and Fe-coated pumice stone", Journal of Industrial and Engineering Chemistry, Vol. 31, No. 25, pp. 124-131, (2015). https://doi.org/10.1016/j.jiec.2015.06.016
  8. M. Tapan, Z. Yalcin, O. Icelli, "Effect of physical, chemical and electro-kinetic properties of pumice samples on radiation shielding properties of pumice material", Annals of Nualear Energy, Vol. 65, pp. 290-298, (2014). https://doi.org/10.1016/j.anucene.2013.11.021
  9. G. Neri, G. Rizzo, L. De Luca, "Zeolitized-pumice as a new support for hydrogenation catalysts", Catalysis Communications, Vol. 9, No. 11, pp. 2085-2089, (2008). https://doi.org/10.1016/j.catcom.2008.03.044
  10. I. E. Napper, A. Bakir, S. J. Rowland, "Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics", Marine Pollution Bulletin, Vol. 99, No. 1, pp. 178-185, (2105). https://doi.org/10.1016/j.marpolbul.2015.07.029
  11. U. R. Alva, B. S. Andersen, "Pumice stones as potential in-situ burning enhancer", Cold Regions Science and Technology, Vol. 146, pp. 167-174, (2018). https://doi.org/10.1016/j.coldregions.2017.12.004
  12. T. J. Jones, J. K. Russell, C. J. Lim, "Pumice attrition in an air-jet", Powder Technology, Vol. 308, pp. 298-305, (2017). https://doi.org/10.1016/j.powtec.2016.11.051
  13. N. Zhang, M. D. Weir, C. Chen, M. A. S. Melo, "Orthodontic cement with protein-repellent and antibacterial properties and the release of calcium and phosphate ions", Journal of Dentistry, Vol. 50, pp. 51-59, (2016). https://doi.org/10.1016/j.jdent.2016.05.001
  14. L. Shao, H. Liu, W. Zeng, C. Zhou, "Immobilized and photocatalytic performances of PDMS-$SiO_2$-chitosan $TiO_2$ composites on pumice under simulated sunlight irradiation", Applied Surface Science, Vol. 478, pp. 1017-1026, (2019). https://doi.org/10.1016/j.apsusc.2019.02.060
  15. J. S. Ko, J. H. Lee, K. C. Sung, "A study on the powders for makeup cosmetics", J. of Korean Oil Chemists' Soc., Vol. 29, No. 2, pp. 286-294, (2012).
  16. S. J. Lee, J. H. Kim, J. Y. Song, "A study on the removal of nitrate nitrogen by redox reaction of zinc in acidic atmosphere", J. of Korean Oil Chemists' Soc., Vol. 34, No. 2, pp. 217-224, (2017).
  17. K. H. Yun, J. Lee, Y. J. Moon, H. K. Go, Y. Lee, D. K. Lee, "Preaparation of blocking ultraviolet mica composites using nano-$TiO_2$", J. of the Korean Oil Chemists' Soc., Vol. 35, No. 4, pp. 1197-1205, (2018).
  18. K. H. Yun, M. G. Park, Y. J. Moon, D. K. Lee, "Preparation of talc-silica composites by controlling surface charge behavior", J. of the Korean Oil Chemists' Soc., Vol. 34, No. 1, pp. 116-124, (2017). https://doi.org/10.12925/jkocs.2017.34.1.116
  19. V. Parihar, M. Raja and R. Paulose, "A Brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles", Rev. Adv. Mater. Sci., Vol. 53, pp. 119-130, (2018). https://doi.org/10.1515/rams-2018-0009