DOI QR코드

DOI QR Code

원자력이용시설 주변의 지하수 감시공의 위치와 심도 선정

Determination of Location and Depth for Groundwater Monitoring Wells Around Nuclear Facility

  • 투고 : 2019.04.26
  • 심사 : 2019.06.24
  • 발행 : 2019.06.30

초록

원자력이용시설에서 유출된 방사성 오염물질은 지표수나 지하수의 유동에 따라 이동할 수 있다. 이 중에 지표수에 의해 이동하는 오염물질은 비교적 감시가 용이하지만, 지하수를 따라 이동하는 오염물질은 대상 매질에서의 지하수흐름에 대한 정보를 알아야 하므로 감시가 매우 어렵다. 그러므로 지하수에 의한 오염물질의 이동을 규명하기 위해서 지질환경의 특성화가 선행되어야 한다. 본 연구에서는 연구부지에 건설된 가상의 원자력이용시설에 대한 감시공의 위치를 결정하고, 감시공에서의 심도별 감시 구간을 선정하는 방법론을 제안하였다. 감시공의 위치를 결정하기 위해 지하수유동 모델링을 수행하였고, 그 결과 지하수 흐름의 하류 지역에 감시공의 위치를 선정하였으며, 감시공에서 수행한 현장조사 결과를 바탕으로 비교적 지하수의 흐름이 빠른 구간을 대상으로 감시 구간을 선정하였다. 본 연구를 통해 개발된 모니터링 방법론은 국내 원자력 발전소를 포함한 원자력이용시설 뿐만 아니라, 유류비축시설의 오염물질, 농업 관련 지하수 오염의 감시 등 다양한 분야에서 잠재적으로 지하수에 유입될 수 있는 오염물질을 조기 감시하는 데에 활용할 수 있을 것이다.

Radioactive contaminant from a nuclear facility moves to the ecosystem by run-off or groundwater flow. Among the two mechanisms, contaminant plume through a river can be easily detected through a surface water monitoring system, but radioactive contaminant transport in groundwater is difficult to monitor because of lack of information on flow path. To understand the contaminant flow in groundwater, understanding of the geo-environment is needed. We suggest a method to decide on monitoring location and points around an imaginary nuclear facility by using the results of site characterization in the study area. To decide the location of a monitoring well, groundwater flow modeling around the study area was conducted. The results show that, taking account of groundwater flow direction, the monitoring well should be located at the downstream area. Also, monitoring sections in the monitoring well were selected, points at which groundwater moves fast through the flow path. The method suggested in the study will be widely used to detect potential groundwater contamination in the field of oil storage caverns, pollution by agricultural use, as well as nuclear use facilities including nuclear power plants.

키워드

참고문헌

  1. R.C. Heath, Basic ground-water hydrology, 10th Ed., U.S. Geological Survey, Alexandria (2004).
  2. National Research Council, Rock Fractures and Fluid Flow: Contemporary Understanding and Applications, The National Academies Press, Washington, D.C. (1996).
  3. K.A. Rod, W. Um, and M. Flury, "Transport of Strontium and Cesium in Simulated Hanford Tank Waste Leachate through Quartz Sand under Saturated and Unsaturated Flow", Environ. Sci. Technol., 44(21), 8089-8094 (2010). https://doi.org/10.1021/es903223x
  4. J.I. Kim, "Significance of Actinide Chemistry for the Long Term Safety of Waste Disposal", Nucl. Eng. Technol., 38(6), 459-482 (2006).
  5. S.M. Lee, H.S. Kim, and G.C. Na, Explanatory Text of the Geological Map of Daejeon, Korea Research Institute of Geoscience and Mineral Resources (1980).
  6. H.I. Park, J.D. Lee, and J.G. Jung, Explanatory Text of the Geological Map of Yuseong, Korea Research Institute of Geoscience and Mineral Resources (1977).
  7. J.G. Jung, M.C. Seo, K.S. Kim, and H.J. Hwang, "Characterization on the Geological Structures and Geothermal Gradient Distribution in the Yusong Area", J. Eng. Geol., 7(3), 173-189 (1997).
  8. J. Andersson and J. Berglund, Testing the Methodology for Site Descriptive Modelling. Application for the Laxemar Area, Swedish Nuclear Fuel and Waste Management Company Technical Report, SKB TR-02-19 (2002).
  9. K.S. Kim, C.H. Kang, N.Y. Ko, Y.K. Koh, J.S. Kwon, G.Y. Kim, I.Y. Kim, J.W. Kim, J.S. Kim, J.H. Ryu, K.W. Park, J.K. Park, T.J. Park, D.S. Bae, M.H. Baek, S. Yoon, M.S. Lee, S.Y. Lee, Y.M. Lee, J.K. Lee, J.O. Lee, J.W. Lee, J.Y. Lee, C.S. Lee, S.L. Jung, J.T. Jung, D.K. Cho, W.J. Cho, S.H. Ji, Y.C. Choi, H.J. Choi, and P.S. Han, A Safety Case of the Conceptual Disposal System for Pyro-processing High-Level Waste Based on the KURT Site (AKRS-16): Safety Case Synthesis Report, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-6726/2016 (2016).
  10. K.W. Park, N.Y. Ko, and S.H. Ji, "Construction of Hydrogeological Model for KURT Site Based on Geological Model", Econ. Envirion. Geol., 51(2), 121-130 (2018).
  11. Electric Power Research Institute, Groundwater Protection Guidelines for Nuclear Power Plants: Public Edition. EPRI, Palo Alto, CA: 2008. 1016099 (2008).
  12. K.W. Park, K.S. Kim, Y.K. Koh, and J.W. Choi, "Synthetic Study on the Geological and Hydrogeological Model around KURT", J. Korean Radioact. Waste Soc., 9(1), 13-21 (2011). https://doi.org/10.7733/jkrws.2011.9.1.13
  13. H. Saegusa, Y. Seno, S. Nakama, T. Tsuruta, T. Iwatsuki, K. Amano, R. Takeuchi, T. Matsuoka, H. Onoe, T. Mizuno, T. Ohyama, K. Hama, T. Sato, M. Kuji, H. Kuroda, T. Semba, M. Uchida, K. Sugihara, and M. Sakamaki, Final Report on the Surface-based Investigation (Phase-I) at the Mizunami Underground Laboratory Project, Japan Atomic Energy Agency Research Report, JAEA-Research 2007-043 (2007).
  14. K.W. Park, Y.K. Koh, K.S. Kim, and J.W. Choi, "Construction of the Geological Model around KURT area based on the Surface Investigations", J. Korean Radioact. Waste Soc., 7(4), 191-205 (2009).
  15. W.S. Dershowitz, "A Probabilistic Model for the Deformability of Jointed Rock Masses", Master Dissertation, Massachusetts Institute of Technology, 1979.
  16. K.W. Park, Y.K. Koh, and K.S. Kim, A Study on Comprehensive Model for Geological and Hydrogeological Model around KURT Area, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-6444/2016 (2016).
  17. C.V. Theis, "The Relation between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well using Groundwater Storage", Trans. Am. Geophys. Union, 16(2), 519-524 (1935). https://doi.org/10.1029/TR016i002p00519
  18. H.H. Cooper and C.E. Jacob, "A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well Field History", Trans. Am. Geophys. Union, 27(4), 526-534 (1946). https://doi.org/10.1029/TR027i004p00526
  19. H.H. Cooper, J.D. Bredehoeft, and I.S. Papadopulos, "Response of a Finite-Diameter Well to an Instantaneous Charge of Water", Water Resour. Res., 3(1), 263-269 (1967). https://doi.org/10.1029/WR003i001p00263
  20. G.P. Kruseman and N.A. de Ridder, "International Institute for Land Reclamation and Improvement", in: Analysis and Evaluation of Pumping Test Data, 2nd ed., 314-320, International Institute for Land Reclamation and Improvement, Wageningen (1994).
  21. H. Bouwer and R.C. Rice, "A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells", Water Resour. Res., 12(3), 423-428 (1976). https://doi.org/10.1029/WR012i003p00423