DOI QR코드

DOI QR Code

멀티로터형 비행체의 후류 상호작용을 고려한 공력 및 공력소음 해석 연구

Study for Aerodynamic and Aeroacoustic Characteristics of Multirotor Configurations Considering the Wake Interaction Effect

  • Ko, Jeongwoo (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Dong Wook (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Soogab (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2019.04.29
  • 심사 : 2019.06.26
  • 발행 : 2019.07.01

초록

수직이착륙기(VTOL) 및 도심 항공 모빌리티와 같은 멀티로터형 비행체는 높은 기동성을 바탕으로 오늘날 널리 활용되고 있다. 멀티로터는 다수의 로터로 구성되어 후류 상호작용이 활발히 발생하고, 이로 인해 멀티로터의 공기역학 및 공력음향학적 특성이 단일 로터와 큰 차이를 보인다. 본 연구에서는 자유 후류 격자 기법 해석자를 활용하여 멀티로터의 후류 상호작용 효과를 규명하고자 하였다. 다양한 비행체와 운용조건의 비교를 위하여, 제자리 비행에서 로터 간격에 따른 효과와 전진 비행에서 전진비 및 전진 방향에 따른 효과를 확인하였다. 제자리 비행 시 후류 및 로터 사이의 상호작용으로 비정상 하중이 발생하였으며, 로터 사이 간격이 줄어들수록 하중 변화폭이 증가하였다. 이는 비정상 하중 소음을 발생시키고 소음 지향성에 변화를 가져온다. 전진 비행 시, 비행 방향에 따라서 비정상 하중 및 소음 특성에서 차이를 보인다. 단일 로터 해석 결과와 비교하였을 때, 멀티로터의 각각의 로터는 상대적 위치에 따라서 하중 소음의 크기와 지향성이 다르다. 결론적으로 후류 상호작용 효과에 대한 분석은 다양한 멀티로터 형상과 운용조건의 공력 및 공력소음 해석에 필수적이다.

Multirotor configurations such as VTOL and urban air mobility have been focused on today due to the high maneuverability. Aerodynamic and aeroacoustic characteristics of multirotor have much difference to those of a single rotor. In this study, a numerical analysis based on the free wake vortex lattice method is used for identifying the wake interaction effect. In order to compare the various configurations and operating conditions, the effects of the spacing between the rotors in hovering flight and the effects of the advancing ratio and the formation in forward flight are discussed. In the hovering flight, the unsteady loading of multirotor changes periodically and loading fluctuation increases as decreasing the spacing. It causes the variation in unsteady loading noise and the noise directivity pattern. In the forward flight, the difference in loading fluctuation and noise characteristics are observed according to the diamond and square formation of rotors. By comparing with results of single rotor analysis, multirotor configurations have different directivity pattern and amplitude of loading noise according to the location of each rotor. As a result, wake interaction effect becomes a highly important factor for aerodynamic and aeroacoustic analysis according to multirotor configurations and operating conditions.

키워드

참고문헌

  1. Floreano, D., and Wood, R. J., "Science, technology and the future of small autonomous drones," Nature, Vol. 521, 2015, pp. 460-466. https://doi.org/10.1038/nature14542
  2. Shukla, D., and Komerath, N., "Multirotor Drone Aerodynamic Interaction Investigation," Drones, Vol. 2, No. 4, 2018, p. 43. https://doi.org/10.3390/drones2040043
  3. Tinney, C. E., and Sirohi, J., "Multirotor drone noise at static thrust," AIAA Journal, Vol. 56, No. 7, 2018, pp. 2816-2826. https://doi.org/10.2514/1.J056827
  4. Casalino, D., van der Velden, W. C. P., and Romani, G., "Community Noise of Urban Air Transportation Vehicles," AIAA Scitech 2019 Forum, January 2019, p. 1834.
  5. Lee, H. J., and Lee, D. J., "Computational study of wake interaction in quadcopter unmanned aerial vehicle," 7th Asian/Australian Rotorcraft Forum, October 2018.
  6. Ventura Diaz, P., and Yoon, S., "High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles," 2018 AIAA Aerospace Sciences Meeting, January 2018, p. 1266.
  7. Zhou, W., Ning, Z., Li, H., and Hu, H., "An Experimental Investigation on Rotor-to-Rotor Interactions of Small UAV Propellers," 35th AIAA Applied Aerodynamics Conference, June 2017, p. 3744.
  8. Tinney, C. E., and Sirohi, J., "Multirotor Drone Noise at Static Thrust," AIAA Journal, Vol. 56, No. 7, 2018, pp. 2816-2826. https://doi.org/10.2514/1.J056827
  9. Zawodny, N. S., Christian, A., and Cabell, R., "A Summary of NASA Research Exploring the Acoustics of Small Unmanned Aerial Systems," AHS Specialists' Conference on Aeromechanics Design for Transformative Vertical Flight, January 2018, pp. 1-11.
  10. Katz, J., and Plotkin, A., Low-Speed Aerodynamics, 2nd Ed., Cambridge University Press, 2001.
  11. Mahendra, J. B., and Leishman, J. G., "Generalized Viscous Vortex Model for Application to Free-Vortex Wake and Aeroacoustic Calculations," Proceedings of the 58th Annual Forum of the American Helicopter Society, June 2002.
  12. Quackenbush, T. R., Wachspress, D. A., and Boschitsch, A. H., "Rotor Aerodynamic Loads Computation Using a Constant Vorticity Contour Free Wake Model," Journal of Aircraft, Vol. 32, No. 5, 1995, pp. 911-920. https://doi.org/10.2514/3.46818
  13. Bliss, D. B., Teske, M. E., and Quackenbush, T. R., "A New Methodology for Free Wake Analysis Using Curved Vortex Elements," NASA CR 3958, 1987.
  14. Farassat, F., "Derivation of formulations 1 and 1a of farassat," NASA TM 2007-214853, 2007.