DOI QR코드

DOI QR Code

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M. (Engineering Department, Shahid Beheshti University)
  • Received : 2018.07.20
  • Accepted : 2019.03.20
  • Published : 2019.06.25

Abstract

A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.

Keywords

References

  1. D.T. Ingersoll, Deliberately small reactors and the second nuclear era, Prog. Nucl. Energy 51 (2009) 589-603. https://doi.org/10.1016/j.pnucene.2009.01.003
  2. H. van Dam, Physics of nuclear reactor safety, Rep. Prog. Phys. 11 (1992) 2025-2077.
  3. Y. Zvirin, A review of natural circulation loops in pressurized water reactors and other systems, Nucl. Eng. Des. 67 (1981) 203-225. https://doi.org/10.1016/0029-5493(82)90142-X
  4. J. Vujic, R.M. Bergmann, R. Skoda, M. Miletic, Small modular reactors: simpler, safer, faster? Energy 43 (2012) 288-295.
  5. L. Cinotti, C.F. Smith, H. Sekimoto, L. Mansani, M. Reale, J.J. Sienicki, Lead cooled system design and challenges in the frame of Generation IV international forum, J. Nucl. Mater. 415 (2011) 245-253. https://doi.org/10.1016/j.jnucmat.2011.04.042
  6. Q. Wu, J.J. Sienicki, Stability analysis on single phase natural circulation in Argonne lead loop facility, Nucl. Eng. Des. 224 (2003) 23-32. https://doi.org/10.1016/S0029-5493(03)00099-2
  7. H.-X. Li, C. Qi, Modeling of distributed parameter systems for applications- a synthesized review from time-space separation, J. Process Control 20 (2010) 891-901. https://doi.org/10.1016/j.jprocont.2010.06.016
  8. D. Lu, X. Zhnag, C. Guo, Stability analysis for single phase liquid metal rectangular natural loops, Ann. Nucl. Energy 73 (2014) 189-199. https://doi.org/10.1016/j.anucene.2014.06.014
  9. M. Gorman, P.J. Widmann, K.A. Robbins, Nonlinear dynamics of a convective loop: a quantitative comparison of experiment with theory, Physica D 19 (1986) 255-267. https://doi.org/10.1016/0167-2789(86)90022-9
  10. A. Cammi, R. Ponciroli, A.B. di Trigliole, G. Magrotti, M. Prata, D. Chiesa, E. Previtali, A zero dimensional model for simulation of TRIGA Mark II dynamic response, Prog. Nucl. Energy 68 (2013) 43-54. https://doi.org/10.1016/j.pnucene.2013.04.002
  11. K. Ardaneh, S. Zaferanlouei, A lumped parameter core dynamics model for the MTR type research reactors under natural convection regime, Ann. Nucl. Energy 56 (2013) 243-250. https://doi.org/10.1016/j.anucene.2013.01.033
  12. S. Bortot, E. Suvdantsetseg, J. Wallenius, BELLA: a multi-point dynamic code for safety-informed design of fast reactors, Ann. Nucl. Energy 85 (2015) 228-235. https://doi.org/10.1016/j.anucene.2015.05.017
  13. Y.M. Farawila, D.R. Todd, M.J. Ades, J.N. Reyes, Analytical stability analogue for single phase natural circulation loop, Nucl. Sci. Eng. 184 (2016) 321-333. https://doi.org/10.13182/NSE16-24
  14. V. Casamassima, P. Colombo, S. Canevese, Preliminary study on a plant control structure for GEN-IV fast reactor, Proc. IFAC 18 (2011) 3734-3740.
  15. S. Nadella, A.K. Srivastava, N.J. Maheshwari, A semi-analytical model for linear stability analysis of rectangular natural circulation loops, Chem. Eng. Sci. 192 (2018) 892-905. https://doi.org/10.1016/j.ces.2018.08.034
  16. D.C. Wade, E.K. Fujita, The integral fast reactor concept: physics of operation and safety, Nucl. Sci. Eng. 100 (1988) 507-524. https://doi.org/10.13182/NSE88-2
  17. J. Wallenius, E. Suvdantsetseg, Electra: european lead cooled training reactor, Nucl. Technol. 177 (2012) 303-313. https://doi.org/10.13182/NT12-A13477
  18. Thermo-physical properties of materials for nuclear engineering: a tutorial and collection of data, Int. Atom. Energy Agency (2008) 81-118.

Cited by

  1. On Singular Perturbation of Neutron Point Kinetics in the Dynamic Model of a PWR Nuclear Power Plant vol.2, pp.2, 2019, https://doi.org/10.3390/sci2020030
  2. On Singular Perturbation of Neutron Point Kinetics in the Dynamic Model of a PWR Nuclear Power Plant vol.2, pp.2, 2020, https://doi.org/10.3390/sci2020036