DOI QR코드

DOI QR Code

Droplet size prediction model based on the upper limit log-normal distribution function in venturi scrubber

  • Lee, Sang Won (Korea Hydro and Nuclear Power - Central Research Institute) ;
  • No, Hee Cheon (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2019.01.24
  • Accepted : 2019.03.18
  • Published : 2019.06.25

Abstract

Droplet size and distribution are important parameters determining venturi scrubber performance. In this paper, we proposed physical models for a maximum stable droplet size prediction and upper limit log-normal (ULLN) distribution parameters. For the proposed maximum stable droplet size prediction model, a Eulerian-Lagrangian framework and a Reitz-Diwakar breakup model are solved simultaneously using CFD calculations to reflect the effect of multistage breakup and droplet acceleration. Then, two ULLN distribution parameters are suggested through best fitting the previously published experimental data. Results show that the proposed approach provides better predictions of maximum stable droplet diameter and Sauter mean diameter compared to existing simple empirical correlations including Boll, Nukiyama and Tanasawa. For more practical purpose, we developed the simple, one dimensional (1-D) calculation of Sauter mean diameter.

Keywords

References

  1. V.G. Guerra, J.A.S. Goncalves, J.R. Coury, Experimental verification of the effect of liquid deposition on droplet size measured in a rectangular venturi scrubber, Chem. Eng. Process: Process Intensification 50 (11-12) (2011) 1137-1142. https://doi.org/10.1016/j.cep.2011.09.005
  2. M. Ali, C.Q. Yan, Z.N. Sun, H. Gu, K. Mehboob, Iodine removal efficiency in non-submerged and submerged self-priming venturi scrubber, Nucl. Eng. Technol. 45 (2013) 203-210. https://doi.org/10.5516/NET.03.2012.047
  3. M. Lehner, Aerosol separation efficiency of a venturi scrubber working in self-priming mode, Aerosol Sci. Technol. 28 (5) (1998) 389-402. https://doi.org/10.1080/02786829808965533
  4. J.C. Lee, W.H. Jung, H.C. Lee, G.T. Kim, D.Y. Lee, Experimental study on aerosol scrubbing efficiency of self-priming venturi scrubber submerged in water pool, Ann. Nucl. Energy 114 (2018) 571-585. https://doi.org/10.1016/j.anucene.2017.12.052
  5. J.A.S. Goncalves, et al., Evaluation of the models available for the prediction of pressure drop in venturi scrubbers, J. Hazard Mater. 81 (1-2) (2001) 123-140. https://doi.org/10.1016/S0304-3894(00)00336-8
  6. C. Berna, et al., Review of droplet entrainment in annular flow: characterization of the entrained droplets, Prog. Nucl. Energy 79 (2015) 64-86. https://doi.org/10.1016/j.pnucene.2014.11.011
  7. S. Nukiyama, Y. Tanasawa, An experiment on the atomization of liquid by means of an air stream (1. Report), Trans. Jap. Soc. Mech. Eng. Ser. A 4 (14) (1938) 128-135.
  8. R. Boll, et al., Mean drop size in a full scale venturi scrubber via transmissometer, J. Air Pollut. Control Assoc. 24 (10) (1974) 934-938. https://doi.org/10.1080/00022470.1974.10469991
  9. B. Azzopardi, Drop sizes in annular two-phase flow, Exp. Fluid 3 (1) (1985) 53-59. https://doi.org/10.1007/BF00285271
  10. L.-P. Hsiang, G. Faeth, Drop deformation and breakup due to shock wave and steady disturbances, Int. J. Multiph. Flow 21 (4) (1995) 545-560. https://doi.org/10.1016/0301-9322(94)00095-2
  11. M. Pilch, C. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop, Int. J. Multiph. Flow 13 (6) (1987) 741-757. https://doi.org/10.1016/0301-9322(87)90063-2
  12. R. Mugele, H. Evans, Droplet size distribution in sprays, Ind. Eng. Chem. 43 (6) (1951) 1317-1324. https://doi.org/10.1021/ie50498a023
  13. L.P. Bayvel, The effect of the polydispersity of drops on the efficiency of a venturi scrubber, Trans. Inst. Chem. Eng. 60 (1) (1982) 31-34.
  14. B. Azzopardi, Drops in annular two-phase flow, Int. J. Multiph. Flow 23 (1997) 1-53. https://doi.org/10.1016/S0301-9322(97)90087-2
  15. D. Fernandez Alonso, et al., Drop size measurements in venturi scrubbers, Chem. Eng. Sci. 56 (16) (2001) 4901-4911. https://doi.org/10.1016/S0009-2509(01)00140-3
  16. D.F. Tatterson, J.C. Dallman, T.J. Hanratty, Drop sizes in annular gas-liquid flows, AIChE 23 (1) (1977) 68-76. https://doi.org/10.1002/aic.690230112
  17. M. Wicks, A. Dukler, In situ measurements of drop size distribution in 2-phase flow-A new method for electrically conducting liquids, Chem. Eng. Prog. 62 (8) (1966).
  18. L.B. Cousins, G.F. Hewitt, Liquid Phase Mass Transfer in Annular Two-phase Flow, Atomic Energy Research Establishment, Harwell, 1968.
  19. J.C. Lopes, A. Dukler, Droplet Sizes, Dynamics and Deposition in Vertical Annular Flow, Dept. of Chemical Engineering, TX (USA), 1985. Houston Univ.
  20. G. Kocamustafaogullari, S. Smits, J. Razi, Maximum and mean droplet sizes in annular two-phase flow, Int. J. Heat Mass Transf. 37 (6) (1994) 955-965. https://doi.org/10.1016/0017-9310(94)90220-8
  21. K. Hay, Z.-C. Liu, T. Hanratty, Relation of deposition to drop size when the rate law is nonlinear, Int. J. Multiph. Flow 22 (5) (1996) 829-848. https://doi.org/10.1016/0301-9322(96)00029-8
  22. V.G. Guerra, et al., Pressure drop and liquid distribution in a venturi scrubber:experimental data and CFD Simulation, Ind. Eng. Chem. Res. 51 (23) (2012) 8049-8060. https://doi.org/10.1021/ie202871q
  23. S.I. Pak, K.S. Chang, Performance estimation of a venturi scrubber using a computational model for capturing dust particles with liquid spray, J. Hazard Mater. 138 (3) (2006) 560-573. https://doi.org/10.1016/j.jhazmat.2006.05.105
  24. CFX 16.1 Solver Theory Guide - Particle Transport I, ANSYS, 2015.
  25. R.D. Reitz, R. Diwakar, Structure of High-Pressure Fuel Sprays, 1987. SAE Technical Paper Series 870598.
  26. R. Schmehl, G. Maier, S. Wittig, CFD analysis of fuel atomization, secondary droplet breakup and spray dispersion in the premix duct of a LPP combustor, in: ICLASS 2000: 8th International Conference on Liquid Atomization and Spray Systems, ILASS, Pasadena, CA, USA, 2000, 16-20 July 2000.
  27. F.X. Tanner, Development and validation of a cascade atomization and drop breakup model for high-velocity dense sprays, Atomization Sprays 14 (3) (2004).
  28. W. Reinecke, G. Waldman, A Study of Drop Breakup behind Strong Shocks with Applications to Flight, AVCO SYSTEMS DIV WILMINGTON MA, 1970.
  29. J. Nicholls, Steam and droplet breakup by shock waves, NASA SP 194 (1972).
  30. D. Atkinson, W. Strauss, Droplet size and surface tension in venturi scrubbers, J. Air Pollut. Control Assoc. 28 (11) (1978) 1114-1118. https://doi.org/10.1080/00022470.1978.10470714
  31. M. Costa, et al., Droplet size in a rectangular venturi scrubber, Braz. J. Chem. Eng. 21 (2) (2004) 335-343. https://doi.org/10.1590/S0104-66322004000200024
  32. S. Viswanathan, D.S. Lim, M.B. Ray, Measurement of drop size and distribution in an annular two-phase, two-component flow occurring in a venturi scrubber, Ind. Eng. Chem. Res. 44 (19) (2005) 7458-7468. https://doi.org/10.1021/ie0489195
  33. V.G. Guerra, J.A.S. Goncalves, J.R. Coury, Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber, J. Hazard Mater. 161 (1) (2009) 351-359. https://doi.org/10.1016/j.jhazmat.2008.03.101

Cited by

  1. Mathematical Modeling of Heat and Mass Processes in a Scrubber: The Box-Wilson Optimization Method vol.13, pp.9, 2019, https://doi.org/10.3390/en13092170