References
- H.A. Ashi, L.J. Cummings, P.C. Matthews, Comparison of methods for evaluating functions of a matrix exponential, Appl. Numer. Math. 59 (2009) 468-486. https://doi.org/10.1016/j.apnum.2008.03.039
- H. Bateman, The solution of a system of differential equations occurring in the theory of radioactive transformations, Proc. Camb. Phil. Soc. 15 (1910) 423-427.
- A.G. Croff, A User's Manual for the ORIGEN2 Computer Code, Oak Ridge National Laboratory, 1980. ORNL/TM-7175.
- A. Yamamoto, M. Tatsumi, N. Sugimura, et al., Numerical solution of stiff burnup equation with short half lived nuclides by the Krylov subspace method, J. Nucl. Sci. Technol. 44 (2) (2007) 147-154. https://doi.org/10.1080/18811248.2007.9711268
- M. Pusa, Rational approximations to the matrix exponential in burnup calculations, Nucl. Sci. Eng. 169 (2) (2011) 155-167. https://doi.org/10.13182/NSE10-81
- D. She, K. Wang, G.L. Yu, Development of the point-depletion code DEPTH, Nucl. Eng. Des. 258 (2013a) 235-240. https://doi.org/10.1016/j.nucengdes.2013.01.007
- S. Blanes, et al., The Magnus expansion and some of its applications, Phys. Rep. 470 (2009) 151-238. https://doi.org/10.1016/j.physrep.2008.11.001
- F. Casas, A. Iserles, Explicit Magnus expansions for nonlinear equations, J. Phys. Math. Gen. 39 (2006) 5445-5461. https://doi.org/10.1088/0305-4470/39/19/S07
- D. She, A. Zhu, K. Wang, Using generalized Laguerre polynomials to compute the matrix exponential in burnup equations, Nucl. Sci. Eng. 175 (3) (2013b) 259-265. https://doi.org/10.13182/NSE12-48
- Y. Kawamoto, G. Chiba, M. Tsuji, et al., Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation, Ann. Nucl. Energy 80 (2015) 219-224. https://doi.org/10.1016/j.anucene.2015.02.015
- A.E. Isotalo, P.A. Aarnio, Comparison of depletion algorithms for large systems of nuclides, Ann. Nucl. Energy 38 (2) (2011) 261-268. https://doi.org/10.1016/j.anucene.2010.10.019
- S. Blanes, P.C. Moan, Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems, Appl. Numer. Math. 56 (2006) 1519-1537. https://doi.org/10.1016/j.apnum.2005.11.004