DOI QR코드

DOI QR Code

Evaluation of gamma-ray and neutron attenuation properties of some polymers

  • Kacal, M.R. (Giresun University, Arts and Sciences Faculty, Department of Physics) ;
  • Akman, F. (Bingol University, Vocational School of Technical Sciences, Department of Electronic Communication Technology) ;
  • Sayyed, M.I. (University of Tabuk, Faculty of Science, Department of Physics) ;
  • Akman, F. (Bingol University, Vocational School of Technical Sciences)
  • 투고 : 2018.11.06
  • 심사 : 2018.11.20
  • 발행 : 2019.04.25

초록

In the present work, we determined the gamma-ray attenuation characteristics of eight different polymers(Polyamide (Nylon 6) (PA-6), polyacrylonitrile (PAN), polyvinylidenechloride (PVDC), polyaniline (PANI), polyethyleneterephthalate (PET), polyphenylenesulfide (PPS), polypyrrole (PPy) and polytetrafluoroethylene (PTFE)) using transmission geometry utilizing the high resolution HPGe detector and different radioactive sources in the energy range 81-1333 keV. The experimental linear attenuation coefficient values are compared with theoretical data (WinXCOM data). The linear attenuation coefficient of all polymers reduced quickly with the increase in energy, at the beginning, while decrease more slowly in the region from 267 keV to 835 keV. The effective atomic number of PVDC and PTFE are comparatively higher than the $Z_{eff}$ of the remaining polymers, while PA-6 possesses the lowest effective atomic number. The half value layer results showed that PTFE ($C_2F_4$, highest density) is more effective to attenuate the gamma photons. Also, the theoretical results of macroscopic effective removal cross section for fast neutrons ($\sum_{R}$) were computed to investigate the neutron attenuation characteristics. It is found that the $\sum_{R}$ values of the eight investigated polymers are close and ranged from $0.07058cm^{-1}$ for PVDC to $0.11510cm^{-1}$ for PA-6.

키워드

참고문헌

  1. F. Akman, M.I. Sayyed, M.R. Kaçal, H.O. Tekin, Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV-1333 keV, J. Alloy. Comp. 772 (2019) 516-524. https://doi.org/10.1016/j.jallcom.2018.09.177
  2. M.I. Sayyed, F. Akman, I.H. Gecibesler, H.O. Tekin, Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region, Nucl. Sci. Tech. 29 (2018) 144. https://doi.org/10.1007/s41365-018-0475-0
  3. F. Akman, I.H. Gecibesler, M.I. Sayyed, S.A. Tijani, A.R. Tufekci, I. Demirtas, Determination of some useful radiation interaction parameters for waste foods, Nuclear Engineering and Technology 50 (6) (2018) 944-949. https://doi.org/10.1016/j.net.2018.05.007
  4. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses, J. Alloy. Comp. 688 (2016) 111-117. https://doi.org/10.1016/j.jallcom.2016.07.153
  5. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Comparative shielding properties of some tellurite glasses: Part 2, J. Non-Cryst. Solids 474 (2017) 16-23. https://doi.org/10.1016/j.jnoncrysol.2017.08.011
  6. H.O. Tekin, T. Manici, Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code, Nucl. Sci. Tech. 28 (2017) 95. https://doi.org/10.1007/s41365-017-0253-4
  7. G. Lakshminarayana, S.O. Baki, K.M. Kaky, M.I. Sayyed, H.O. Tekin, A. Lira, I.V. Kityk, M.A. Mahdi, Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications, J. Non-Cryst. Solids 471 (2017) 222-237. https://doi.org/10.1016/j.jnoncrysol.2017.06.001
  8. S.A.M. Issa, M.I. Sayyed, M.H.M. Zaid, K.A. Matari, Photon parameters for gamma-rays sensing properties of some oxide of lanthanides, Results in Physics 9 (2018) 206-210. https://doi.org/10.1016/j.rinp.2018.02.039
  9. C.V. More, R.R. Bhosale, P.P. Pawar, Detection of new polymer materials as gamma-ray-shielding materials, Radiat. Eff. Defect Solid 175 (5-6) (2017) 469-484.
  10. M. Buyukyildiz, M.A. Tasdelen, Y. Karabul, M. Caglar, O. Icelli, E. Boydas, Measurement of photon interaction parameters of high-performance polymers and their composites, Radiat. Eff. Defect Solid 173 (5-6) (2018) 474-488. https://doi.org/10.1080/10420150.2018.1477155
  11. N. Kucuk, M. Cakir, N.A. Isitman, Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers, Radiat. Protect. Dosim. 153 (1) (2013) 127-134. https://doi.org/10.1093/rpd/ncs091
  12. V.P. Singh, N.M. Badiger, N. Kucuk, Assessment of methods for estimation of effective atomic numbers of common human organ and tissue substitutes: waxes, plastics and polymers, Radioprotection 49 (2) (2014) 115-121. https://doi.org/10.1051/radiopro/2013090
  13. O. Gurler, U.A. Tarim, Determination of radiation shielding properties of some polymer and plastic materials against gamma-rays, ActaPhysicaPolonica A 130 (2016) 236-238.
  14. R.R. Bhosale, C.V. More, D.K. Gaikwad, P.P. Pawar, M.N. Rode, Radiation shielding and gamma ray attenuation properties of some polymers, Nucl. Technol. Radiat. Protect. 32 (3) (2017) 288-293. https://doi.org/10.2298/NTRP1703288B
  15. M.I. Sayyed, Investigation of shielding parameters for smart polymers, Chin. J. Phys. 54 (2016) 408-415. https://doi.org/10.1016/j.cjph.2016.05.002
  16. R. Mirji, B. Lobo, Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies, Radiaiton Physics and Chemistry 135 (2017) 32-44. https://doi.org/10.1016/j.radphyschem.2017.03.001
  17. H.C. Manjunatha, A study of gamma attenuation parameters in poly methyl methacrylate and Kapton, Radiat. Phys. Chem. 137 (2017) 254-259. https://doi.org/10.1016/j.radphyschem.2016.01.024
  18. K.S. Mann, A. Rani, M.S. Heer, Shielding behaviors of some polymer and plastic materials for gamma-rays, Radiat. Phys. Chem. 106 (2015) 247-254. https://doi.org/10.1016/j.radphyschem.2014.08.005
  19. S.M. Vahabi, M. Bahreinipour, M.S. Zafarghandi, Determining the mass attenuation coefficients for some polymers using MCNP code: a comparison study, Vacuum 136 (2017) 73-76. https://doi.org/10.1016/j.vacuum.2016.11.011
  20. V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation, Vacuum 119 (2015) 284-288. https://doi.org/10.1016/j.vacuum.2015.06.006
  21. T. Vedamurthy, M. Murugesan, Synthesis, characterization, and evaluation of the hydrophobic, dielectric properties of phenols functionalized nylon 6 polymers by zinc acetate catalyst using Mannich reaction, Mater. Chem. Phys. 216 (2018) 517-525. https://doi.org/10.1016/j.matchemphys.2018.05.070
  22. X. Shi, J. Jiang. Anionic polymerization initiated by lithium amides for preparing high molecular weight polyacrynitrile. Chin. Chem. Lett., https://doi.org/10.1016/j.celet.2018.01.040.
  23. C. He, J. Liu, J. Li, F. Zhu, H. Zhao, Blending based polyacrynitrile/poly(vinyl alcohol) membrane for rechargeable lithium ion batteries, J. Membr. Sci. 560 (2018) 30-37. https://doi.org/10.1016/j.memsci.2018.05.013
  24. K.S. Samra, S. Thakur, L. Singh, Photoluminescent and thermal behavior of 120 MeV silicon and 84 MeV oxygen ion irradiated PVDC, J. Lumin. 131 (2011) 686-694. https://doi.org/10.1016/j.jlumin.2010.11.019
  25. A. Eftekhari, L. Li, Y. Yang, Polyanilinesupercapasitors. Journal of Power Sources 347 (2017) 86-107. https://doi.org/10.1016/j.jpowsour.2017.02.054
  26. Y. Meng, L. Zhang, R. Xing, H. Huang, Y. Qu, T. Jiao, J. Zhou, Q. Peng, Facile preportion and electrochemical characterization of self-assembled core-shell diamond-polypyrrolenanocomposites, Colloids Surf., A 55 (2018) 787-794.
  27. A. Reznickova, Z. Kolska, K. Zaruba, V. Svorcik, Grafting of gold nanoparticles on polyethylenetere phthalate using dithiol interlayer, Mater. Chem. Phys. 145 (2014) 484-490. https://doi.org/10.1016/j.matchemphys.2014.03.001
  28. T. Hisamatsu, S. Nakano, T. Adachi, M. Ishikawa, K. Iwakura, The effect of compatibility on toughness of PPS/SEBS polymer alloy, Polymer 41 (2000) 4803-4809. https://doi.org/10.1016/S0032-3861(99)00489-9
  29. Y. Wu, C. Sun, Y. Wu, Y. Xing, J. Xiao, B. Guo, Y. Wang, Y. Sui, The degradation behavior and mechanism of polytetrafluoroethylene under low energy proton irradiation, Nucl. Instrum. Methods Phys. Res. B 430 (2018) 47-53. https://doi.org/10.1016/j.nimb.2018.06.005
  30. M.I. Sayyed, F. Akman, V. Turan, A. Araz. Evaluation of radiation absorption capacity of some soil samples. Radiochim. Acta, https://doi.org/10.1515/ract-2018-2996.
  31. M.R. Kacal, F. Akman, M.I. Sayyed. Investigation of radiation shielding properties for some ceramics. Radiochim. Acta, https://doi.org/10.1515/ract-2018-3030.
  32. B.O. Elbashir, M.G. Dong, M.I. Sayyed, S.A.M. Issa, K.A. Matori, M.H.M. Zaid, Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data, Results in Physics 9 (2018) 6-11. https://doi.org/10.1016/j.rinp.2018.01.075
  33. F. Akman, R. Durak, M.R. Kacal, F. Bezgin, Study of absorption parameters around the K edge for selected compounds of Gd, X Ray Spectrom. 45 (2016) 103-110. https://doi.org/10.1002/xrs.2676
  34. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCOM- a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654. https://doi.org/10.1016/j.radphyschem.2004.04.040
  35. A.H. El-Kateb, R.A.M. Rizk, A.M. Abdul-Kader, Determination of atomic crosssections and effective atomic numbers for some alloys, Ann. Nucl. Energy 27 (2000) 1333-1343. https://doi.org/10.1016/S0306-4549(99)00121-8
  36. T. Singh, N. Kumar, P.S. Singh, Chemical composition dependence of exposure buildup factors for some polymers, Ann. Nucl. Energy 36 (2009) 114-120. https://doi.org/10.1016/j.anucene.2008.09.013
  37. P.S. Singh, T. Singh, P. Kaur, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents, Ann. Nucl. Energy 35 (2008) 1093-1097. https://doi.org/10.1016/j.anucene.2007.10.007
  38. M.I. Sayyed, G. Lakshminarayana, I.V. Kityk, M.A. Mahdi, Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications, Radiat. Phys. Chem. 139 (2017) 33-39. https://doi.org/10.1016/j.radphyschem.2017.05.013
  39. M.I. Sayyed, M.Y. AlZaatreh, K.A. Matori, H.A.A. Sidek, M.H.M. Zaid, Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries, Results in Physics 9 (2018) 585-592. https://doi.org/10.1016/j.rinp.2018.01.057
  40. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (1997) 1389-1401. https://doi.org/10.1016/S0306-4549(97)00003-0
  41. Y. Elmahroug, B. Tellili, C. Souga, Determination of shielding parameters for different types of resins, Ann. Nucl. Energy 63 (2014) 619-623. https://doi.org/10.1016/j.anucene.2013.09.007

피인용 문헌

  1. Synthesis, physical, structural and shielding properties of newly developed B2O3-ZnO-PbO-Fe2O3 glasses using Geant4 code and WinXCOM program vol.125, pp.8, 2019, https://doi.org/10.1007/s00339-019-2831-2
  2. Gamma radiation shielding properties of some Bi-Sn-Zn alloys vol.40, pp.1, 2019, https://doi.org/10.1088/1361-6498/ab6aaf
  3. Study of polycarbonate-bismuth nitrate composite for shielding against gamma radiation vol.324, pp.1, 2020, https://doi.org/10.1007/s10967-020-07038-3
  4. Investigation of γ-ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite vol.95, pp.8, 2020, https://doi.org/10.1088/1402-4896/ab9a6e
  5. Evaluating inorganic compounds as air substitute materials in photon irradiation vol.15, pp.8, 2020, https://doi.org/10.1088/1748-0221/15/08/p08007
  6. APPROACH to nonisothermal crystallization kinetics of poly( 4‐METHYL‐1‐PENTENE ) melt: Effect of gamma‐ray vol.2, pp.1, 2019, https://doi.org/10.1002/pls2.10029
  7. Prediction of the linear/nonlinear optical, kinetics, mechanical and gamma-ray shielding features of MgO-WO3-TeO2-BaO glasses vol.32, pp.3, 2019, https://doi.org/10.1007/s10854-020-05105-9
  8. Investigation of x-ray attenuation property of modification PbO with graphene in epoxy polymer vol.8, pp.3, 2019, https://doi.org/10.1088/2053-1591/abecea
  9. Detailed Inspection of γ-ray, Fast and Thermal Neutrons Shielding Competence of Calcium Oxide or Strontium Oxide Comprising Bismuth Borate Glasses vol.14, pp.9, 2019, https://doi.org/10.3390/ma14092265
  10. Exploring the FTIR, Optical and Nuclear Radiation Shielding Properties of Samarium-Borate Glass: A Characterization through Experimental and Simulation Methods vol.11, pp.7, 2019, https://doi.org/10.3390/nano11071713
  11. Fabrication, characterization of neutron and proton shielding investigation of tungsten oxide dispersed-ultra high Mw polyethylene vol.548, 2019, https://doi.org/10.1016/j.chemphys.2021.111227
  12. Shielding Properties of Some Marble Types: A Comprehensive Study of Experimental and XCOM Results vol.14, pp.15, 2019, https://doi.org/10.3390/ma14154194
  13. Gamma radiation shielding properties of poly(vinyl butyral)/Bi2O3@BaZrO3 nanocomposites vol.268, 2019, https://doi.org/10.1016/j.matchemphys.2021.124728
  14. Development of New Lead-Free Composite Materials as Potential Radiation Shields vol.14, pp.17, 2021, https://doi.org/10.3390/ma14174957
  15. Experimental Investigation of Radiation Shielding Competence of Bi2O3-CaO-K2O-Na2O-P2O5 Glass Systems vol.14, pp.17, 2019, https://doi.org/10.3390/ma14175061
  16. Investigation of Photon Radiation Attenuation Capability of Different Clay Materials vol.14, pp.21, 2019, https://doi.org/10.3390/ma14216702
  17. Illustration of distinct nuclear radiation transmission factors combined with physical and elastic characteristics of barium boro-bismuthate glasses vol.31, 2021, https://doi.org/10.1016/j.rinp.2021.105067
  18. Enhancement of Ceramics Based Red-Clay by Bulk and Nano Metal Oxides for Photon Shielding Features vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247878
  19. Structural and optical analysis of gamma-induced modification in polycarbonate nuclear track detector vol.96, pp.12, 2019, https://doi.org/10.1088/1402-4896/ac227d
  20. Measurement of mass attenuation coefficient and its derivable in polymers vol.144, 2022, https://doi.org/10.1016/j.pnucene.2021.104044