DOI QR코드

DOI QR Code

Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network

  • Saghafi, Mahdi (Department of Mechanical Engineering, University of Bonab) ;
  • Ghofrani, Mohammad B. (Department of Energy Engineering, Sharif University of Technology)
  • 투고 : 2018.05.07
  • 심사 : 2018.11.29
  • 발행 : 2019.04.25

초록

This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches, requiring time-integrated parameters and independent firing algorithms. NARX neural network is able to directly deal with time-dependent signals for dynamic estimation of break sizes in real-time. The case studied is a LOCA in the primary system of Bushehr nuclear power plant (NPP). In this study, number of hidden layers, neurons, feedbacks, inputs, and training duration of transients are selected by performing parametric studies to determine the network architecture with minimum error. The developed NARX neural network is trained by error back propagation algorithm with different break sizes, covering 5% -100% of main coolant pipeline area. This database of LOCA scenarios is developed using RELAP5 thermal-hydraulic code. The results are satisfactory and indicate feasibility of implementing NARX neural network for break size estimation in NPPs. It is able to find a general solution for break size estimation problem in real-time, using a limited number of training data sets. This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr NPP.

키워드

참고문헌

  1. M. Marseguerra, E. Zio, Identification of a line break by a neural network methodology, Ann. Nucl. Energy 21 (1994) 249-258, 1994/04/01. https://doi.org/10.1016/0306-4549(94)90007-8
  2. P. Baraldi, F. Di Maio, M. Rigamonti, E. Zio, R. Seraoui, Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients, Mech. Syst. Signal Process. 58-59 (2015) 160-178, 2015/06/01/. https://doi.org/10.1016/j.ymssp.2014.12.018
  3. Z.-Q. Wang, C.-H. Hu, X.-S. Si, E. Zio, Remaining useful life prediction of degrading systems subjected to imperfect maintenance: application to draught fans, Mech. Syst. Signal Process. 100 (2018) 802-813, 2018/02/01/. https://doi.org/10.1016/j.ymssp.2017.08.016
  4. T.V. Santosh, A. Srivastava, V.V.S. Sanyasi Rao, A.K. Ghosh, H.S. Kushwaha, Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks, Reliab. Eng. Syst. Saf. 94 (2009) 759-762, 3//. https://doi.org/10.1016/j.ress.2008.08.005
  5. S.J. Lee, P.H. Seong, Computational Intelligence in Nuclear Applications: lessons Learned and Recent DevelopmentsA dynamic neural network based accident diagnosis advisory system for nuclear power plants, Prog. Nucl. Energy 46 (2005) 268-281, 2005/01/01. https://doi.org/10.1016/j.pnucene.2005.03.009
  6. D.Y. Kim, K.H. Yoo, J.H. Kim, M.G. Na, S. Hur, C.H. Kim, Prediction of leak flow rate using fuzzy neural networks in severe post-LOCA circumstances, IEEE Trans. Nucl. Sci. 61 (2014) 3644-3652. https://doi.org/10.1109/TNS.2014.2357583
  7. S.H. Park, J.H. Kim, K.H. Yoo, M.G. Na, Smart sensing of the RPV water level in NPP severe accidents using a GMDH algorithm, IEEE Trans. Nucl. Sci. 61 (2014) 931-938. https://doi.org/10.1109/TNS.2014.2305444
  8. M. Saghafi, M.B. Ghofrani, Accident management support tools in nuclear power plants: a post-Fukushima review, Prog. Nucl. Energy 92 (2016) 1-14, 9//. https://doi.org/10.1016/j.pnucene.2016.06.006
  9. EPRI, Severe Accident Management Guidance Technical Basis Report, Volumes 2: The Physics of Accident Progression, Palo Alto, CA, 2012.
  10. M.G. Na, S.H. Shin, D.W. Jung, S.P. Kim, J.H. Jeong, B.C. Lee, Estimation of break location and size for loss of coolant accidents using neural networks, Nucl. Eng. Des. 232 (2004) 289-300, 8//. https://doi.org/10.1016/j.nucengdes.2004.06.007
  11. K. Mo, S.J. Lee, P.H. Seong, A dynamic neural network aggregation model for transient diagnosis in nuclear power plants, Prog. Nucl. Energy 49 (2007) 262-272, 4//. https://doi.org/10.1016/j.pnucene.2007.01.002
  12. M.G. Na, W.S. Park, D.H. Lim, Detection and diagnostics of loss of coolant accidents using support vector machines, IEEE Trans. Nucl. Sci. 55 (2008) 628-636. https://doi.org/10.1109/TNS.2007.911136
  13. S.H. Lee, Y.G. No, M.G. Na, K.I. Ahn, S.Y. Park, Diagnostics of loss of coolant accidents using SVC and GMDH models, IEEE Trans. Nucl. Sci. 58 (2011) 267-276. https://doi.org/10.1109/TNS.2010.2091972
  14. D. Roverso, Plant diagnostics by transient classification: the aladdin approach, Int. J. Intell. Syst. 17 (2002) 767-790. https://doi.org/10.1002/int.10049
  15. M. Saghafi, M. Ghofrani, Introduction of a research project on development of accident management support tool for BNPP (WWER-1000) based on the lessons learned from Fukushima accident, in: Presented at the International Experts Meeting on Strengthening Research and Development Effectiveness in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant Vienna, Austria, 2015.
  16. M. Saghafi, M.B. Ghofrani, F. D'Auria, Development and qualification of a thermal-hydraulic nodalization for modeling station blackout accident in PSBVVER test facility, Nucl. Eng. Des. 303 (2016) 109-121, 7//. https://doi.org/10.1016/j.nucengdes.2016.04.012
  17. M. Saghafi, M.B. Ghofrani, F. D'Auria, Application of FFTBM with signal mirroring to improve accuracy assessment of MELCOR code, Nucl. Eng. Des. 308 (2016) 238-251, 2016/11/01/. https://doi.org/10.1016/j.nucengdes.2016.08.025
  18. M. Saghafi, F. Yousefpour, K. Karimi, S.M. Hoseyni, Determination of PAR configuration for PWR containment design: a hydrogen mitigation strategy, Int. J. Hydrogen Energy 42 (2017) 7104-7119, 2017/03/09/. https://doi.org/10.1016/j.ijhydene.2017.01.110
  19. L. Tsungnan, B.G. Horne, C.L. Giles, S.Y. Kung, What to remember: how memory order affects the performance of NARX neural networks, in: Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on vol. 2, 1998, pp. 1051-1056.
  20. L. Tsungnan, B.G. Horne, P. Tino, C.L. Giles, Learning long-term dependencies in NARX recurrent neural networks, IEEE Trans. Neural Network. 7 (1996) 1329-1338. https://doi.org/10.1109/72.548162
  21. M. Boroushaki, M.B. Ghofrani, C. Lucas, Identification of a nuclear reactor core (VVER) using recurrent neural networks, Ann. Nucl. Energy 29 (2002) 1225-1240, 7//. https://doi.org/10.1016/S0306-4549(01)00105-0
  22. A. Petruzzi, M. Cherubini, F. D'Auria, Thirty years' experience in RELAP5 applications at GRNSPG & NINE, Nucl. Technol. 193 (2016) 47-87. https://doi.org/10.13182/NT14-144
  23. T. Takeda, ROSA/LSTF test and RELAP5 code analyses on PWR 1% vessel upper head small-break LOCA with accident management measure based on core exit temperature, Nucl. Eng. Technol. 50 (8) (2018) 1412-1420, 2018/08/10/. https://doi.org/10.1016/j.net.2018.08.004
  24. T. Takeda, I. Ohtsu, Uncertainty analysis of ROSA/LSTF test by RELAP5 code and PKL counterpart test concerning PWR hot leg break LOCAs, Nuclear Engineering and Technology 50 (2018) 829-841, 2018/08/01/. https://doi.org/10.1016/j.net.2018.05.005
  25. J.M. Izquierdo, J. Hortal, M. Sanchez Perea, E. Melendez, C. Queral, J. Rivas-Lewicky, Current status and applications of integrated safety assessment and simulation code system for ISA, Nuclear Engineering and Technology 49 (2017) 295-305, 2017/03/01/. https://doi.org/10.1016/j.net.2017.01.013
  26. S.W. Lee, B.D. Chung, Y.-S. Bang, S.W. Bae, Analysis of uncertainty quantification method by comparing Monte-Carlo method and Wilks' formula, Nuclear Engineering and Technology 46 (2014) 481-488, 2014/08/01/. https://doi.org/10.5516/NET.02.2013.047

피인용 문헌

  1. Nexus between Energy Usability, Economic Indicators and Environmental Sustainability in Four ASEAN Countries: A Non-Linear Autoregressive Exogenous Neural Network Modelling Approach vol.8, pp.12, 2019, https://doi.org/10.3390/pr8121529
  2. Artificial intelligence in nuclear industry: Chimera or solution? vol.278, 2019, https://doi.org/10.1016/j.jclepro.2020.124022
  3. Developing a robust and flexible smart tool to predict a full range Critical Heat Flux (CHF) in different LWRs by using deep learning Artificial Neural Networks (ANN) via parallel multi-processing vol.142, 2019, https://doi.org/10.1016/j.pnucene.2021.103985