DOI QR코드

DOI QR Code

Surface Modification and Medical Formulation Technology Using Adhesion of Plant Tannic Acid

식물 유래 탄닌산의 접착능을 이용한 표면 개질 및 의료용 제형 기술 동향

  • Received : 2019.06.05
  • Accepted : 2019.06.26
  • Published : 2019.06.30

Abstract

Tannic acid is one of the most commonly found polyphenols in the vegetable field. Initially, research on tannins concentrated on physiological functions such as antioxidants. Recently, however, tannic acid has attracted much interest as a molecular glue as it has been found to interact virtually all bio-macromolecules such as proteins and DNA. The various properties of tannic acid are expected to control the wettability of the surface, contribute to energy storage and generation, and show potential as a medical agent. Here, tannic acid will be discussed about the interaction of with bio-macromolecules as a molecular glue, surface modification, and utilization of itself as biomaterials.

탄닌산은 식물계에서 가장 많이 발견되는 폴리페놀 중 하나로, 초기 탄닌산 연구는 항산화제 등과 같은 생리학적 기능에 집중되어 있었다. 그러나 최근에는 탄닌산이 단백질, DNA 등 거의 모든 생체고분자와 분자간결합을 하는 것이 밝혀짐에 따라 분자적 접착제로서 많은 관심을 받고 있다. 탄닌산의 다양한 특성들은 표면의 기능, 젖음성을 조절할 뿐 아니라 에너지 저장 및 발생 장치에 기여하고, 의학적 제재로의 다양한 가능성을 보이고 있다. 본 논문에서는 분자적 접착제로서의 탄닌산과 생체고분자와의 결합, 탄닌산을 통한 표면 개질, 의료용 제재로의 활용 등에 대해 다루고자 한다.

Keywords

JGMHB1_2019_v20n2_71_f0001.png 이미지

Figure 1. 탄닌산을 사용한 물질 비의존선 표명코팅.

JGMHB1_2019_v20n2_71_f0002.png 이미지

Figure 2. 탄닌산(TA)-Fe(Ⅲ) 복합체를 이용한 다양한 표면 코팅.

JGMHB1_2019_v20n2_71_f0003.png 이미지

Figure 3. 탄닌산의 접착능력을 이용한 지혈 제재.

JGMHB1_2019_v20n2_71_f0004.png 이미지

Figure 4. 체내 단백질 전달을 위한 탄닌산 함유 파티클 제재.

References

  1. H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science, 318, 426 (2007). https://doi.org/10.1126/science.1147241
  2. H. Lee, N. F. Scherer, P. B. Messersmith, Proc. Natl. Acad. Sci., 103, 12999 (2006). https://doi.org/10.1073/pnas.0605552103
  3. T. S. Sileika, D. G. Barrett, R. Zhang, K. H. A. Lau, P. B. Messersmith, Angew. Chemie - Int. Ed., 52, 10766 (2013). https://doi.org/10.1002/anie.201304922
  4. X. Zhang, Y. Lv, H. C. Yang, Y. Du, Z. K. Xu, ACS Appl. Mater. Interfaces, 8, 32512 (2016). https://doi.org/10.1021/acsami.6b10693
  5. X. Zhang, P. F. Ren, H. C. Yang, L. S. Wan, Z. K. Xu, Appl. Surf. Sci., 360, 291 (2016). https://doi.org/10.1016/j.apsusc.2015.11.015
  6. K. Liu, H. Li, Y. Wang, X. Gou, Y. Duan, Colloids Surfaces A Physicochem. Eng. Asp., 477, 35 (2015). https://doi.org/10.1016/j.colsurfa.2015.03.048
  7. X. Zhang, M. Liu, X. Zhang, F. Deng, C. Zhou, J. Hui, W. Liu, Y. Wei, Toxicol. Res., 4, 160 (2015). https://doi.org/10.1039/C4TX00066H
  8. D. Payra, M. Naito, Y. Fujii, Y. Nagao, Chem. Commun., 52, 312 (2016). https://doi.org/10.1039/C5CC07090B
  9. S. Huang, Y. Zhang, J. Shi, W. Huang, ACS Sustain. Chem. Eng., 4, 676 (2016). https://doi.org/10.1021/acssuschemeng.6b00149
  10. H. Ejima, J. J. Richardson, K. Liang, J. P. Best, M. P. Van Koeverden, G. K. Such, J. Cui, F. Caruso, Science, 341, 154 (2013). https://doi.org/10.1126/science.1237265
  11. J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J. J. Richardson, Y. Yan, K. Peter, D. Von Elverfeldt, C. E. Hagemeyer, F. Caruso, Angew. Chemie - Int. Ed., 53, 5546 (2014). https://doi.org/10.1002/anie.201311136
  12. J. H. Park, K. Kim, J. Lee, J. Y. Choi, D. Hong, S. H. Yang, F. Caruso, Y. Lee, I. S. Choi, Angew. Chemie - Int. Ed., 53, 12420 (2014). https://doi.org/10.1002/anie.201405905
  13. T. G. Shutava, M. D. Prouty, V. E. Agabekov, Y. M. Lvov, Chem. Lett., 35, 1144 (2006). https://doi.org/10.1246/cl.2006.1144
  14. I. Erel-Unal, S. A. Sukhishvili, Macromolecules, 41, 3962 (2008). https://doi.org/10.1021/ma800186q
  15. V. Kozlovskaya, E. Kharlampieva, I. Drachuk, D. Cheng, V. V. Tsukruk, Soft Matter, 6, 3596 (2010). https://doi.org/10.1039/b927369g
  16. B.-S. Kim, H. Lee, Y. Min, Z. Poon, P. T. Hammond, Chem. Commun., 28, 4194 (2009).
  17. M. V. Lomova, A. I. Brichkina, M. V. Kiryukhin, E. N. Vasina, A. M. Pavlov, D. A. Gorin, G. B. Sukhorukov, M. N. Antipina, ACS Appl. Mater. Inter., 7, 11732 (2015). https://doi.org/10.1021/acsami.5b03263
  18. E. Kilic, M. V. Novoselova, S. H. Lim, N. A. Pyataev, S. I. Pinyaev, O. A. Kulikov, O. A. Sindeeva, O. A. Mayorova, R. Murney, M. N. Antipina, B. Haigh, G. B. Sukhorukov, M. V. Kiryukhin, Sci. Report, 7, 4159 (2017). https://doi.org/10.1038/s41598-017-04625-5
  19. A. Shukla, J. C. Fang, S. Puranam, F. R. Jensen, P. T. Hammond, Adv. Mater., 24, 492 (2012). https://doi.org/10.1002/adma.201103794
  20. X. F. Huang, J. W. Jia, Z. K. Wang, Q. L. Hu, Chinese J. Polym. Sci., 33, 284 (2015). https://doi.org/10.1007/s10118-015-1580-8
  21. M. Shin, J. H. Ryu, J. P. Park, K. Kim, J. W. Yang, H. Lee, Adv. Funct. Mater., 25, 1270 (2015). https://doi.org/10.1002/adfm.201403992
  22. K. Kim, M. Shin, M. Y. Koh, J. H. Ryu, M. S. Lee, S. Hong, H. Lee, Adv. Funct. Mater., 25, 2402 (2015). https://doi.org/10.1002/adfm.201500034
  23. M. Shin, K. Kim, W. Shim, J. W. Yang, H. Lee, ACS Biomater. Sci. Eng., 2, 687 (2016). https://doi.org/10.1021/acsbiomaterials.6b00051
  24. M. Dierendonck, K. Fierens, R. De Rycke, L. Lybaert, S. Maji, Z. Zhang, Q. Zhang, R. Hoogenboom, B. N. Lambrecht, J. Grooten, J. P. Remon, S. D. Koker, B. G. D. Geest, Adv. Funct. Mater., 24, 4634 (2014). https://doi.org/10.1002/adfm.201400763
  25. M. Shin, H. A. Lee, M. Lee, Y. Shin, J. J. Song, S. W. Kang, D. H. Nam, E. J. Jeon, M. Cho, M. Do, S. Park, M. S. Lee, J. Jang, S. Cho, K. Kim, H. Lee, Nat. Biomed. Eng., 2, 304 (2018). https://doi.org/10.1038/s41551-018-0227-9