DOI QR코드

DOI QR Code

인계 폴리올을 이용한 난연성 폴리우레탄의 합성 및 특성 분석

Synthesis and Characterization of Phosphorus Polyurethanes Using Phosphorus Polyols

  • 김태윤 (한국화학연구원 화학산업고도화센터) ;
  • 김용갑 (한국화학연구원 화학산업고도화센터) ;
  • 임충선 (한국화학연구원 화학산업고도화센터) ;
  • 서봉국 (한국화학연구원 화학산업고도화센터) ;
  • 이원주 (한국화학연구원 화학산업고도화센터)
  • Kim, Taeyoon (Center for Chemical Industry Development, Korea Research Institute of Chemical Technology) ;
  • Kim, Yong Gap (Center for Chemical Industry Development, Korea Research Institute of Chemical Technology) ;
  • Lim, Chung-Sun (Center for Chemical Industry Development, Korea Research Institute of Chemical Technology) ;
  • Seo, Bongkuk (Center for Chemical Industry Development, Korea Research Institute of Chemical Technology) ;
  • Lee, Wonjoo (Center for Chemical Industry Development, Korea Research Institute of Chemical Technology)
  • 투고 : 2019.03.18
  • 심사 : 2019.06.18
  • 발행 : 2019.06.30

초록

본 연구에서는 인계 폴리올을 phenylphosphonic dichloride (PPDC), allylphosphonic dichloride (APDC)에 ethylene glycol (EG)을 반응시켜 합성하였고 분자량이 880~1,560 g/mol의 폴리올 얻었다. 이를 이용하여 polycarbonate diol (PCD)와 함께 4,4'-diphenylmethane diisocyanate (MDI)와 중합하여 인계 폴리우레탄을 얻었다. 합성한 인계 폴리우레탄의 인의 합량이 높아질수록 열분해 온도는 감소하였지만 챠 (char)의 발생과 발생양이 증가하는 것을 확인하였다. 또한 UL-94V 시험법을 통하여 APDC를 포함하는 인계 폴리우레탄 인의 함유량이 0.5 wt%이상일 때 V-0의 난연등급되는 것을 확인하였다.

In this study, phosphorus polyols, having a molecular weight of 880 to 1,560 g/mol, were synthesized by reacting phenylphosphonic dichloride (PPDC), allylphosphonic dichloride (APDC), and ethylene glycol (EG) in solvent, to enhance flame retardance of polyurethane. Phosphorus polyurethanes were polymerized using the synthesized phosphorus polyols, polycarbonate diol (PCD), and 4,4'-diphenylmethane diisocyanate (MDI) by a melt polymerization method. As increasing phosphorus contents of the phosphorus polyurethanes, we observed that the remaining char amount increased. This tendency was also confirmed in the following UL-94V test. We found that when the synthesized phosphorus polyols were applied, the resulting phosphorus polyurethanes show UL-94V0 grade at above 0.5 wt% phosphorus contents.

키워드

JGMHB1_2019_v20n2_61_f0001.png 이미지

Scheme 1. Synthesis of APDC.

JGMHB1_2019_v20n2_61_f0002.png 이미지

Scheme 2. Synthesis of polyol containing phosphorus and C=C double bond.

JGMHB1_2019_v20n2_61_f0003.png 이미지

Scheme 3. Synthesis of polyurethane containing phosphorus C=C double.

JGMHB1_2019_v20n2_61_f0004.png 이미지

Figure 1. FT-IR spectrum of APDC.

JGMHB1_2019_v20n2_61_f0005.png 이미지

Figure 3. FT-IR spectra of polyol according to APDC ratio (mol%); (a) 70 %, (b) 30 %, (c) 15 % (d) 0 %.

JGMHB1_2019_v20n2_61_f0006.png 이미지

Figure 4. 1H- and 31P- spectra of polyol according to APDC ratio (mol%); (a) 70 %, (b) 30 %, (c) 15 % (d) 0 %.

JGMHB1_2019_v20n2_61_f0007.png 이미지

Figure 5. FT-IR spectra of polyurethane containing phosphorus; phosphorus contents = solid: 1 wt%, dash: 0.75 wt%, dot: 0.5 wt%, dash dot: 0.25 wt%, dash dot dot: 0.1wt%, short dash: 0 wt%.

JGMHB1_2019_v20n2_61_f0008.png 이미지

Figure 6. TGA analysis (phosphorus contents = solid: phosphorous based polyol, dash: 1 wt%, dot: 0.5 wt%, dash dot: 0.25 wt%, dash dot dot: 0 wt%) and tensile strength test of polyurethane containing phosphorus.

JGMHB1_2019_v20n2_61_f0009.png 이미지

Figure 2. (a) 1H- and (b) 31P- NMR spectra of APDC.

Table 1. Synthesis of polyol containing phosphorus and C=C double bond

JGMHB1_2019_v20n2_61_t0001.png 이미지

Table 2. Flame retardant test (UL-94V)

JGMHB1_2019_v20n2_61_t0002.png 이미지

참고문헌

  1. S. Monge, B. Canniccioni, A. Graillot and J.-J. Robin, Biomacromolecules, 12, 1973 (2011). https://doi.org/10.1021/bm2004803
  2. T. Bock, R. Mulhaupt and H. Mohwald, Macromol. Rapid Commun., 27, 2065 (2006). https://doi.org/10.1002/marc.200600601
  3. S. V. Kotov, S. D. Pedersen, W. Qiu, Z.-M. Qiu and D. J. Burton, J. Flu. Chem., 82, 13 (1997). https://doi.org/10.1016/S0022-1139(96)03534-8
  4. F. Jiang, A. Kaltbeitzel, W. H. Meyer, H. Pu and G. Wegner, Macromolecules, 41, 3081 (2008). https://doi.org/10.1021/ma701976d
  5. K. N. Bauer, H. T. Tee, M. M. Velencoso and F. R. Wurm, Prog. Polym. Sci., 73, 61 (2017). https://doi.org/10.1016/j.progpolymsci.2017.05.004
  6. B. N. Jang and J. Choi, Polym. Sci. Technol., 20, 8 (2009).
  7. M. M. Velencoso, A. Battig, J. C. Markwart, B. Schartel and F. R. Wurm, Angew. Chemie - Int. Ed., 57, 10450 (2018). https://doi.org/10.1002/anie.201711735
  8. A. J. Papa and W. R. Proops, J. Appl. Polym. Sci., 16, 2361 (1972). https://doi.org/10.1002/app.1972.070160915
  9. N. Grassie and D. MacKerron, Eur. Polym. J., 16, 113 (1980). https://doi.org/10.1016/0014-3057(80)90055-5
  10. N. Grassie and D. H. Mackerron, Polym. Degrad. Stab., 5, 89 (1983). https://doi.org/10.1016/0141-3910(83)90002-2
  11. T. C. Chang, W. S. Shen, Y. S. Chiu and S. Y. Ho, Polym. Degrad. Stab., 49, 353 (1995). https://doi.org/10.1016/0141-3910(95)00116-4
  12. T. Wolf, T. Rheinberger, J. Simon and F. R. Wurm, J. Am. Chem. Soc., 139, 11064-11072 (2017). https://doi.org/10.1021/jacs.7b02723
  13. M.-S. Yen and S.-C. Kuo, J. Appl. Polym. Sci., 67, 1301 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980214)67:7<1301::AID-APP21>3.0.CO;2-2
  14. S. V. Levchik and E. D. Weil, Polym. Int., 53, (2004).