DOI QR코드

DOI QR Code

Optical Properties of Sn-doped CH3NH3PbBr3 Perovskite Nanoparticles

Sn 첨가에 따른 CH3NH3PbBr3 페로브스카이트 나노입자의 광학적 특성

  • Sihn, Moon Ryul (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jeon, Mingi (Department of Materials Science and Engineering, Chungnam National University) ;
  • Park, Hyerin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Choi, Jihoon (Department of Materials Science and Engineering, Chungnam National University)
  • 신문렬 (충남대학교 신소재공학과) ;
  • 전민기 (충남대학교 신소재공학과) ;
  • 박혜린 (충남대학교 신소재공학과) ;
  • 최지훈 (충남대학교 신소재공학과)
  • Received : 2019.02.15
  • Accepted : 2019.03.26
  • Published : 2019.04.30

Abstract

Methylammonium lead bromide ($MAPbBr_3$) has attracted a lot of attention due to their excellent optoelectronic properties such as the compositional flexibility relevant to photoluminescence (PL) and UV-Vis absorbance spectrum, high diffusion length, and photoluminescence quantum yield (PLQY). Despite such advantages of organic-inorganic perovskite materials, more systematic study on manipulation of their optoelectronic properties in homo- or heterovalent metal ions doped halide perovskite nanocrystals is lacking. In this study, we systematically investigated the optical properties of colloidal $CH_3NH_3Pb_{1-x}Sn_xCl_{2x}Br_{3-2x}$ particles by addition of $SnCl_2$ into the typical methylammonium lead tribromide ($CH_3NH_3PbBr_3$) precursor solution. We found that only 1% addition of $SnCl_2$ shows a significant blue-shift from 540 nm to 420 nm in UV-Vis absorbance spectrum due to the strong quantum confinement effect. Furthermore, continuous blue-shift in photoluminescence spectra was observed as the amount of Cl increases. These experimental results provide new insights into the replacement of Pb within $MAPbBr_3$, required for the broadening of their application.

Keywords

PMGHBJ_2019_v52n2_90_f0001.png 이미지

Fig. 2. X-ray diffraction patterns of organic-inorganic perovskite nanocrystal (CH3NH3Pb1-xSnxCl2xBr3-2x) with a wide range (0-50%) of Sn doping contents.

PMGHBJ_2019_v52n2_90_f0002.png 이미지

Fig. 1. (a) X-ray diffraction pattern of organic-inorganic perovskite nanocrystal (CH3NH3PbBr3). Corresponding Miller indexes are labeled at the top of each diffraction peak. (b) PL emission (solid line) and UV-vis absorbance (dashed line) spectra with excitation wavelength (λex) of 365 nm. (c) Transmission electron micrograph of H3NH3PbBr3 nanocrystals.

PMGHBJ_2019_v52n2_90_f0003.png 이미지

Fig. 3. (a) PL emission (black solid lines: Sn-doped CH3NH3PbBr3, red solid lines: reference samples) and UV-vis absorbance (dashed line) spectra of organic-inorganic perovskite nanocrystal (CH3NH3Pb1-xSnxCl2xBr3-2x) with a wide range (0-90%) of Sn doping contents. (b) Maximum PL emission wavelength (λex) and the optical absorption edge wavelength as a function of the Sn doping contents (0-90%). (c) Stoke shift of CH3NH3Pb1-xSnxCl2xBr3-2x nanocrystals with a wide range (0-90%) of Sn doping contents.

PMGHBJ_2019_v52n2_90_f0004.png 이미지

Fig. 4. (a) Tauc plot and (b) corresponding energy band gap of organic-inorganic perovskite nanocrystal (CH3NH3Pb1-xSnxCl2xBr3-2x) with various Sn doping contents.

Table 1. Nominal compositions of the precursors

PMGHBJ_2019_v52n2_90_t0001.png 이미지

References

  1. Bayrammurad Saparov and David B. Mitzi, Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design, Chem. Rev. 116 (2016) 4558-4596. https://doi.org/10.1021/acs.chemrev.5b00715
  2. Zhen Fan, Kuan Sun and John Wang, Perovskites for photovoltaics: a combined review of organicinorganic halide perovskites and ferroelectric oxide perovskites, J. Mater. Chem. A 3 (2015) 18809-18828. https://doi.org/10.1039/C5TA04235F
  3. Luciana C. Schmidt, Antonio Pertegas, Soranyel Gonzalez-Carrero, Olga Malinkiewicz, Said Agouram, Guillermo Minguez Espallargas, Henk J. Bolink, Raquel E. Galian, and Julia Perez-Prieto, Nontemplate Synthesis of $CH_3NH_3PbBr_3$ Perovskite Nanoparticles, J. Am. Chem. Soc. 136 (2014) 850-853. https://doi.org/10.1021/ja4109209
  4. Son-Tung Ha, Rui Su, Jun Xing, Qing Zhang and Qihua Xiong, Metal halide perovskite nanomaterials: synthesis and applications, Chem. Sci. 8 (2017) 2522-2536. https://doi.org/10.1039/C6SC04474C
  5. Sai Bai, Zhongcheng Yuan and Feng Gao, Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications, J. Mater. Chem. C 4 (2016) 3898-3904. https://doi.org/10.1039/C5TC04116C
  6. Qi Chen, Nicholas De Marco, Yang (Michal) Yang, Tze-Bin Song, Chun-Chao Chen, Hongxiang Zhao, Ziruo Hong, Huanping Zhou, Yang Yan, Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications, Nano Today. 10 (2015) 355-396. https://doi.org/10.1016/j.nantod.2015.04.009
  7. Pooja Tyagi, Sarah M. Arveson, and William A. Tisdale, Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement, J. Phys. Chem. Lett. 6 (2015) 1911-1916. https://doi.org/10.1021/acs.jpclett.5b00664
  8. Jasmina A. Sichert, Yu Tong, Niklas Mutz, Mathias Vollmer, Stefan Fischer, Karolina Z. Milowska, Ramon Garcia Cortadella, Bert Nickel, Carlos Cardenas-Daw, Jacek K. Stolarczyk, Alexander S. Urban, and Jochen Feldmann, Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets, Nano Lett. 15 (2015) 6521-6527. https://doi.org/10.1021/acs.nanolett.5b02985
  9. Feng Zhang, Haizheng Zhong, Cheng Chen, Xiangang Wu, Xiangmin Hu, Hailong Huang, Junho Han, Bingsuo Zuo, and Yuping Dong, Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X=Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology, ACS Nano 9 (2015) 4533-4542. https://doi.org/10.1021/acsnano.5b01154
  10. Daniel Sapori, Mikael Kepenekian, Laurent Pedesseau, Claudine Katan and Jacky Even, Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites, Nanoscale 8 (2016) 6369-6378. https://doi.org/10.1039/C5NR07175E
  11. Xiafang Du, Guan Wu, Jian Cheng, Hui Dang, Kangzhe Ma, Ya-Wen Zhang, Peng-Feng Tan and Su Chen, High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes, RSC Adv. 7 (2017) 10391. https://doi.org/10.1039/C6RA27665B
  12. Artavazd Kirakosyan, Seokjin Yun, Soon-Gil Yoon, Jihoon Choi, Surface Engineering for Improved Stability of $CH_3NH_3PbBr_3$ Perovskite Nanocrystals, Nanoscale 10 (2018) 1885-1891. https://doi.org/10.1039/C7NR06547G
  13. Song Wei, Yanchun Yang, Xiaojiao Kang, Lijian Huang, and Doaheng Pan, Room-Temperature and Gram-Scale Synthesis of $CsPbX_3$ (x=Cl, Br, I) Perovskite Nanocrystals with 50-88% Photoluminescence Quantum Yields, Chem. Common. 52 (2016) 7265-7268. https://doi.org/10.1039/C6CC01500J
  14. Paulraj Arunkumar, Kyeong Hun Gil, Seob Won, Sanjith Unithrattil, Yoon Hwa Kim, Ha Jun Kim, and Won Bin Im, Colloidal Organolead Halide Perovskite with a High Mn Solubility Limit: A Step Toward Pb-Free Luminescent Quantum Dots, J. Phys. Chem. Lett 8 (2017) 4161-4166. https://doi.org/10.1021/acs.jpclett.7b01440
  15. Xin-Gang Zhao, Ji-Hui Yang, Yuhao Fu, Dongwen Yang, Qiaoling Xu, Liping Yu, Su-Huai Wei, and Lijun Zhang, Design of Lead-Free Inorganic Halide Perovskites for solar Cells via Cation-Transmutation, J. Am. Chem. Soc. 139 (2017) 2630-2638. https://doi.org/10.1021/jacs.6b09645
  16. Xin-Gang Zhao, Dongwen Yang, Yuanhui Sun, Tianshu Li, Lijun Zhang, Liping Yu, and Alex Zunger, Cu-In Halide Perovskite Solar Absorbers, J. Am. Chem. Soc. 139 (2017) 6718-6725. https://doi.org/10.1021/jacs.7b02120
  17. Min-Cherl Jung, Sonia R. Raga, and Yabing Qi, Properties and solar cell application of Pb-free perovskite films formed by vapor deposition, RSC Adv. 6 (2016) 2819-2825. https://doi.org/10.1039/C5RA21291J
  18. Taewoo Jeon, Sung Jin Kim, Jisun Yoon, Jinwoo Byun, Hye Rim Hong, Tae-Woo Lee, Ji-Seon Kim, Byungha Shin, and Sang Ouk Kim, Hybrid Perovskites : Effective Crystal Growth for Optoelectronic Applications, Adv. Energy Mater. 7 (2017) 1602596. https://doi.org/10.1002/aenm.201602596
  19. Gregor Kieslich, Shijing Sun and Anthony K. Cheetham, Solid-state principles applied to organicinorganic perovskites: new tricks for an old dog, Chem. Sci. 5 (2014) 4712-4715. https://doi.org/10.1039/C4SC02211D
  20. Gregor Kieslich, Shijing Sun and Anthony K. Cheetham, An extended Tolerance Factor approach for organic-inorganic perovskites, Chem. Sci. 6 (2015) 3430-3433. https://doi.org/10.1039/C5SC00961H
  21. Haizhou Lu, Huotian Zhang, Sijian Yuan, Jiao Wang, Yiqiang Zhan and Lirong Zheng, An optical dynamic study of $MAPbBr_3$ single crystals passivated with $MAPbCl_3/I_3-MAPbBr_3$ heterojunctions, Phys. Chem. Chem. Phys. 19 (2017) 4516-4521. https://doi.org/10.1039/C6CP07182A