Fig. 2. Transmittance comparison of rubber test results.
Fig. 3. Digital images of different conditions (1),(2),(3) after rubber
Fig. 4. schematic of the Anti-reflective structure formed on PET surface and FE-SEM images of cross section at different conditions (a) 40 W 25 min (b) 70 W 10 min (c) 140 W 2 min.
Fig. 1. (a) Transmittance of visible average (400-800nm) according to plasma power 40 W, 70 W, 140 W respectively. (b) Optimized transmittance average (400-800nm) raw data changed plasma power 40 W, 70 W, 140 W respectively.
Table 1. Properties of Toray Film
Table 2. Experimental conditions
Table 3. Results of rubber test
References
- Y. Leterrier, Durability of nanosized oxygen-barrier coatings on polymers. Progress in Materials Science, 2003. 48(1): p. 1-55. https://doi.org/10.1016/S0079-6425(02)00002-6
- B.G. Priyadarshini and A. Sharma, Design of multilayer anti-reflection coating for terrestrial solar panel glass. Bulletin of Materials Science, 2016. 39(3): p. 683-689. https://doi.org/10.1007/s12034-016-1195-x
- U. Sikder and M.A. Zaman, Optimization of multilayer antireflection coating for photovoltaic applications. Optics & Laser Technology, 2016. 79: p. 88-94. https://doi.org/10.1016/j.optlastec.2015.11.011
- D. Chen, Anti-reflection (AR) coatings made by sol-gel processes: a review. Solar Energy Materials and Solar Cells, 2001. 68(3-4): p. 313-336. https://doi.org/10.1016/S0927-0248(00)00365-2
- J.J. Chu, C.S. Li, C.C. Shih and S.C. Chang, Antireflection high conductivity multi-layer coating for flat CRT products. 2002, Google Patents.
- J. Dobrowolski, Daniel Poitras, Penghui, Ma, Himanshu, Vakil and Muchael, Acree Toward perfect antireflection coatings: numerical investigation. Applied optics, 2002. 41(16): p. 3075-3083. https://doi.org/10.1364/AO.41.003075
- J.A. Hiller, Mendelsohn, J.D. and Rubner, M.F. Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nature materials, 2002. 1(1): p. 59. https://doi.org/10.1038/nmat719
- M. Keshavarz Hedayati, and M. Elbahri, Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a minireview. Materials, 2016. 9(6): p. 497. https://doi.org/10.3390/ma9060497
- P.B. Uskens, M. Burghoorn, M. Mourad and Z. Vroon, Antireflective coatings for glass and transparent polymers. Langmuir, 2016. 32(27): p. 6781-6793. https://doi.org/10.1021/acs.langmuir.6b00428
- J.T. Cox and G. Hass, Antireflection coatings for optical and infrared materials. Physics of Thin Films, 1968. 2: p. 239.
- R. Herrmann, Quarterwave layers: simulation by three thin layers of two materials. Applied optics, 1985. 24(8): p. 1183-1188. https://doi.org/10.1364/AO.24.001183
- H.A. Macleod Thin-film optical filters. 2010: CRC press.
- H.K. Raut, V.A. Ganesh, A. Nair and Ramakrishna, Seeram. Anti-reflective coatings: A critical, indepth review. Energy & Environmental Science, 2011. 4(10): p. 3779-3804. https://doi.org/10.1039/c1ee01297e
-
M. Mazur, D. Wojcieszak, D. Domaradzki, S. Kaczmarek and F.Placido, Song.
$TiO_2/SiO_2$ multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering. Opto-Electronics Review, 2013. 21(2): p. 233-238. - J-H. Selj, T.T. Mongst and E.S. Marstein, Reduction of optical losses in colored solar cells with multilayer antireflection coatings. Solar Energy Materials and Solar Cells, 2011. 95(9): p. 2576-2582. https://doi.org/10.1016/j.solmat.2011.03.005
- J.H. Yun, T.S. Bae, J.D. Kwon, S.H. Lee and G.H. Lee, Antireflective silica nanoparticle array directly deposited on flexible polymer substrates by chemical vapor deposition. Nanoscale, 2012. 4(22): p. 7221-7230. https://doi.org/10.1039/c2nr32381h
- H. Shimomura, Z. Gemici, R. Cohen and M.F. Rubner Layer-by-layer-assembled high-performance broadband antireflection coatings. ACS applied materials & interfaces, 2010. 2(3): p. 813-820. https://doi.org/10.1021/am900883f
- Z. Wu, J. Walish, A.Nolte, L. Zhai, R.E.Cohen and M.F. Rubner Deformable antireflection coatings from polymer and nanoparticle multilayers. Advanced Materials, 2006. 18(20): p. 2699-2702. https://doi.org/10.1002/adma.200601438
- L. Xu and J. He, Antifogging and antireflection coatings fabricated by integrating solid and mesoporous silica nanoparticles without any posttreatments. ACS applied materials & interfaces, 2012. 4(6): p. 3293-3299. https://doi.org/10.1021/am300658e
- K. Choi, S.H. Park, M.S. Song, Y.T. Lee, C.K. Hwangbo, H. Yang and H.S. Lee Nano-tailoring the surface structure for the monolithic high?performance antireflection polymer film. Advanced Materials, 2010. 22(33): p. 3713-3718. https://doi.org/10.1002/adma.201001678
- S.Y. Chou, P.R. Krauss and P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Applied physics letters, 1995. 67(21): p. 3114-3116. https://doi.org/10.1063/1.114851
- J.H. Yun, S.H. Lee, T.S. Bae, Y.M. Yun, S.H. Lee, J.D. Kwon and G.H. Lee, Adhesive and Structural Failures of Oxide Coatings on Plasma-Treated Polymers. Plasma Processes and Polymers, 2011. 8(9): p. 815-831. https://doi.org/10.1002/ppap.201100016
- I.S. Saidi, S.L. Jacques and F.K. Tittel, Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Applied optics, 1995. 34(31): p. 7410-7418. https://doi.org/10.1364/AO.34.007410
- A. Bieder, V. Condoin, Y. Leterrier, G. Tornare, P. Vonrohr and J. Manson, Mechanical properties of carbon-modified silicon oxide barrier films deposited by plasma enhanced chemical vapor deposition on polymer substrates. Thin solid films, 2007. 515(13): p. 5430-5438. https://doi.org/10.1016/j.tsf.2006.12.176
- J. Lewis, Material challenge for flexible organic devices. Materials today, 2006. 9(4): p. 38-45. https://doi.org/10.1016/S1369-7021(06)71446-8