Fig. 1. SEM surface images of (a) Al1050 and (b) Al7075 after 24-month exposure to atmospheric conditions
Fig. 2. SEM cross-section images of Al1050 surface exposed to atmospheric conditions for 24 months
Fig. 3. TEM cross-section image and EDS elemental mapping of pitting area in Al1050 exposed to 24-month atmospheric conditions; (a) dark field image (b) Al (c) O
Fig. 4. TEM cross-section panorama images and EDS elemental mapping of surface oxide layer formed on Al1050(non-pitting); (a) dark field image (b) O
Fig. 5 TEM cross-section image and EDS elemental mapping for oxygen penetration region of Al1050; (a) dark field image (b) O (c) Al
Fig. 6. EDS elemental mapping of oxygen penetration area in Al1050 (higher magnification of area shown in Fig. 5); (a) O (b) Al (c) Si
Fig. 7. Line EDS analysis results for oxygen penetration regions of Al1050 (Note each area number is designated in Fig. 5.)
Fig. 9. TEM cross-section image and EDS elemental mapping of oxygen penetration area in Al7075 exposed to 24-month atmospheric conditions (Right side of each picture is external surface.); (a) Dark field image (b) O (c) Al
Fig. 10. TEM cross-section panorama image and EDS elemental mapping of oxygen penetration area in Al7075 (Right side of each picture is external surface); (a) O (b) Mg (c) Si (d) Fe (e) Cr
Fig. 11 SEM image and EDS elemental mapping near the Mg-Si particle in Al7075
Fig. 12 TEM image and EDS elemental mapping near the oxygen penetration tip in Al7075; (a) dark field image, (b) Mg, (c) O, Cr, Mg, (d) Al, (e) Cr, (f) Zn
Fig. 8. (a) SEM cross-section image of surface oxidation region and (b) TEM specimen image after FIB sectioning for Al7075
Table 1. Chemical composition(wt%) of aluminum alloy Al7075 and Al1050 specimens.
참고문헌
- ASM International, ASM Handbook Vol 13A Corrosion: Fundamentals, Testing, and Protection, 2003, pp. 196-209.
- T. F. Otero, A. Porro, A. S. Elola, Prediction of Pitting Probability on 1050 Aluminum in Environmental Conditions, Corrosion 48 (1992) 785-791. https://doi.org/10.5006/1.3316000
- S. Sun, Q. Zheng, D. Li, J. Wen, Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments, Corros. Sci. 51 (2009) 719-727. https://doi.org/10.1016/j.corsci.2009.01.016
- T. Zhang, Y. He, R. Cui, T. An, Long-Term Atmospheric Corrosion of Aluminum Alloy 2024-T4 in a Coastal Environment, J. Mater. Eng. Perform. 24 (2015) 2764-2773. https://doi.org/10.1007/s11665-015-1541-y
- X. K. Yang, L. W. Zhang, S. Y. Zhang, M. Liu, K. Zhou, X. L. Mu, Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments, Mater. Corros. 68 (2017) 529-535. https://doi.org/10.1002/maco.201609201
- M. Poltavtseva, A. Heyn, E. Boese, Long term corrosion behavior of clad aluminum materials under different atmospheric conditions, Mater. Corros. 64 (2013) 723-730. https://doi.org/10.1002/maco.201206962
- J. Ryl, J. Wysocka, M. Jarzynka, A. Zielinski, J. Orlikowski, K. Darowicki, Effect of native airformed oxidation on the corrosion behavior of AA 7075 aluminum alloys, Corros. Sci. 87 (2014) 150-155. https://doi.org/10.1016/j.corsci.2014.06.022
- Y. S. Kim, H. K. Lim, J. J. Kim, W. S. Hwang, and Y. S. Park, Corrosion cost and corrosion map of Korea-Based on the data from 2005 to 2010, Corros. Sci. Tech. 10 (2011) 52-59. https://doi.org/10.14773/CST.2011.10.2.052
- 김선규, 이찬형, 반치범. 대기 부식에 의해 생성된 Al1050 및 Al7075 알루미늄 합금 산화막에 대한 투과전자현미경 분석. 한국표면공학회지, 50(6), (2017) 447-454. https://doi.org/10.5695/JKISE.2017.50.6.447
- S.P. Knight, M. Salagaras, A.R. Trueman, The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography, Corros. Sci. 53 (2011) 727-734. https://doi.org/10.1016/j.corsci.2010.11.005
- Yoshiyuki Oya, Yoichi Kojima, Nobuyoshi Hara, Influence of Silicon on Intergranular Corrosion for Aluminum Alloys, MATERIALS TRANSACTIONS, Volume 54, Issue 7, (2013), 1200-1208. https://doi.org/10.2320/matertrans.M2013048
- Binger, W. W., Hollingsworth, E. H. and Sprawls, D., In Aluminium Vol. I, ed. Van Horn, ASM, (1967), p. 209.
- M. Kaifu, H. Fujimoto and M. Takemoto, Influence of Mn contents and heat treatments on intergranular corrosion of Al-Mn alloys, J. Japan Inst. Met. 32 (1982), 135-142.
- M. Zamin, The Role of Mn in the Corrosion Behavior of Al-Mn Alloys, Corrosion 37 (1981) 627-632. https://doi.org/10.5006/1.3577549
- A.K. Bhattamishra, Kishori Lal, Microstructural studies on the effect of Si and Cr on the intergranular corrosion in Al-Mg-Si alloys, Materials & Design, Volume 18, Issue 1, (1997) 25-28. https://doi.org/10.1016/S0261-3069(97)00027-7
- Y. Zheng, B. Luo, Z. Bai, J. Wang, and Y. Yin, Study of the Precipitation Hardening Behavior and Intergranular Corrosion of Al-Mg-Si Alloys with Differing Si Contents, Metals (2017) 7, 387. https://doi.org/10.3390/met7100387
- J. R. Galvele and S. M. de De Micheli, Mechanism of intergranular corrosion of Al-Cu alloys, Corros. Sci. 10 (1970), 795-807. https://doi.org/10.1016/S0010-938X(70)80003-8
- Y. Zou, Q. Liu, Z. Jia, Y. Xing, L. Ding, and X. Wang, The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content, Appl. Surf. Sci. 405 (2017) 489-496. https://doi.org/10.1016/j.apsusc.2017.02.045
- American Society for Testing and Materials (ASTM) International, ASTM G50-10 Standard Practice for Conducting Atmospheric Corrosion Tests on Metals (2010).
- M. Navaser, M. Atapour, Effect of Friction Stir Processing on Pitting Corrosion and Intergranular Attack of 7075 Aluminum Alloy, J. Mater. Sci. Tech. 33 (2017) 155-165. https://doi.org/10.1016/j.jmst.2016.07.008