DOI QR코드

DOI QR Code

최적 경로 계획을 위한 RRT*-Smart 알고리즘의 개선과 2, 3차원 환경에서의 적용

Improvement of RRT*-Smart Algorithm for Optimal Path Planning and Application of the Algorithm in 2 & 3-Dimension Environment

  • 탁형태 (한국항공대학교 학부 항공우주 및 기계공학과) ;
  • 박천건 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 이상철 (한국항공대학교 항공우주 및 기계공학부)
  • 투고 : 2019.06.10
  • 심사 : 2019.06.25
  • 발행 : 2019.06.30

초록

Optimal path planning refers to find the safe route to the destination at a low cost, is a major problem with regard to autonomous navigation. Sampling Based Planning(SBP) approaches, such as Rapidly-exploring Random Tree Star($RRT^*$), are the most influential algorithm in path planning due to their relatively small calculations and scalability to high-dimensional problems. $RRT^*$-Smart introduced path optimization and biased sampling techniques into $RRT^*$ to increase convergent rate. This paper presents an improvement plan that has changed the biased sampling method to increase the initial convergent rate of the $RRT^*$-Smart, which is specified as m$RRT^*$-Smart. With comparison among $RRT^*$, $RRT^*$-Smart and m$RRT^*$-Smart in 2 & 3-D environments, m$RRT^*$-Smart showed similar or increased initial convergent rate than $RRT^*$ and $RRT^*$-Smart.

키워드

HHOHB8_2019_v27n2_1_f0001.png 이미지

Fig 1. RRT, RRT* Algorithm

HHOHB8_2019_v27n2_1_f0002.png 이미지

Fig 2. RRT* pseudo code

HHOHB8_2019_v27n2_1_f0003.png 이미지

Fig 3. Path Optimization

HHOHB8_2019_v27n2_1_f0004.png 이미지

Fig 4. mRRT*-Smart pseudo code

HHOHB8_2019_v27n2_1_f0005.png 이미지

Fig 5. Modified beacon node

HHOHB8_2019_v27n2_1_f0006.png 이미지

Fig 6. A comparison of 2-D simulation results. RRT* is shown in (a)-(d), RRT*-Smart is shown in (e)-(f) and mRRT*-Smart is shown in (i)-(l)

HHOHB8_2019_v27n2_1_f0007.png 이미지

Fig 7. Costs against iterations(S=RRT*-Smart, M=mRRT*-Smart)

HHOHB8_2019_v27n2_1_f0008.png 이미지

Fig 8. A comparison of 3-D simulation results at n=2000

HHOHB8_2019_v27n2_1_f0009.png 이미지

Fig 9. Costs against iterations(S=RRT*-Smart, M=mRRT*-Smart)

HHOHB8_2019_v27n2_1_f0010.png 이미지

Fig 10. Nodes at 2000 iterations

Table 1. Simulation setting

HHOHB8_2019_v27n2_1_t0001.png 이미지

Table 2. Bias sampling setting

HHOHB8_2019_v27n2_1_t0002.png 이미지

Table 3. Path planning results at 1000, 1500, 2000 and 2500 iterations for 2-D case 1, 2, 3 & 3000, 3500, 4000, and 4500 iterations for 2-D case 4

HHOHB8_2019_v27n2_1_t0003.png 이미지

Table 4. Path planning results at 1000, 1500, 2000 and 2500 iterations for 3-D Case

HHOHB8_2019_v27n2_1_t0004.png 이미지

참고문헌

  1. S. M. Lavalle, "Rapidly-exploring random trees: A new tool for path planning", 1998.
  2. Noreen, I., Khan, A., and Habib, Z., "Optimal path planning using RRT* based approaches: a survey and future directions", Int. J. Adv. Comput. Sci. Appl, 7(11), The Science and Information (SAI) Organization , 2016, pp. 97-107
  3. Karaman, S., and Frazzoli, E,. " Samplingbased algorithms for optimal motion planning", The international journal of robotics research, 30(7), Sage Publications, 2011, pp. 846-894. https://doi.org/10.1177/0278364911406761
  4. Nasir, J., Islam, F., Malik, U., Ayaz, Y., Hasan, O., Khan, M., and Muhammad, M. S,. "RRT*-SMART: A rapid convergence implementation of RRT", International Journal of Advanced Robotic Systems, 10(7), Sage Publications, 2013, pp. 299. https://doi.org/10.5772/56718
  5. H, Lee, H, Kim, "2D Optimal Path Plannin using RRT*smart algorithm", KSAS 2014 Fall Conference, The Korean Society for Aeronautical and Space Sciences, Jeju, 2014, pp. 1,237-1,240.
  6. I. Skrjanc, G. Klancar, "Optimal cooperative collision avoidance between multiple robots based on Bernstein-Bezier curves", Robot. Auton. syst. Elsevier, 58(1), 2010, pp. 1-9. https://doi.org/10.1016/j.robot.2009.09.003
  7. B. Lau, C. Sprunk, W. Burgard, "Kinodynamic Motion Planning for Mobile Robots Using Splines", Proceedings of the EEE/RSJ International Conference on Intelligent Robots and Systems, St Louis, MO, USA, 2009, pp. 2427-2433.